Spectral type of the shift transformation of differential processes with stationary increments
HTML articles powered by AMS MathViewer
- by Kiyosi Itô
- Trans. Amer. Math. Soc. 81 (1956), 253-263
- DOI: https://doi.org/10.1090/S0002-9947-1956-0077017-0
- PDF | Request permission
References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Paul R. Halmos, Introduction to Hilbert Space and the theory of Spectral Multiplicity, Chelsea Publishing Co., New York, N. Y., 1951. MR 0045309
- Kiyosi Itô, On stochastic processes. I. (Infinitely divisible laws of probability), Jpn. J. Math. 18 (1942), 261–301. MR 14629, DOI 10.4099/jjm1924.18.0_{2}61
- Kiyosi Itô, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157–169. MR 44064, DOI 10.2969/jmsj/00310157
- Kiyosi Itô, Complex multiple Wiener integral, Jpn. J. Math. 22 (1952), 63–86 (1953). MR 63609, DOI 10.4099/jjm1924.22.0_{6}3
- Shizuo Kakutani, Determination of the spectrum of the flow of Brownian motion, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 319–323. MR 35924, DOI 10.1073/pnas.36.5.319 P. Lévy, Théorie de l’addition des variables aléatoires, Paris, 1937, rev. ed., 1954. J. v. Neumann, Zur Operatorenmethode der klassischen Mechanik, Ann. of Math. vol. 33 (1932) pp. 587-648.
- Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332–350. MR 6617, DOI 10.2307/1968872
- I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106–134. MR 76317, DOI 10.1090/S0002-9947-1956-0076317-8
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 253-263
- MSC: Primary 60.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0077017-0
- MathSciNet review: 0077017