Modular Lie algebras. I
HTML articles powered by AMS MathViewer
- by Charles W. Curtis
- Trans. Amer. Math. Soc. 82 (1956), 160-179
- DOI: https://doi.org/10.1090/S0002-9947-1956-0079221-4
- PDF | Request permission
References
- Emil Artin, Cecil J. Nesbitt, and Robert M. Thrall, Rings with Minimum Condition, University of Michigan Publications in Mathematics, no. 1, University of Michigan Press, Ann Arbor, Mich., 1944. MR 0010543
- Garrett Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. (2) 38 (1937), no. 2, 526–532. MR 1503351, DOI 10.2307/1968569 E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Oeuvres Completes, Partie I, vol. 1, pp. 355-398.
- Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785–793. MR 6544, DOI 10.2307/2371622
- Felix Gantmacher, Canonical representation of automorphisms of a complex semi-simple Lie group, Rec. Math. (Moscou) 5(47) (1939), 101–146 (English, with Russian summary). MR 0000998
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- G. Hochschild, Representations of restricted Lie algebras of characteristic $p$, Proc. Amer. Math. Soc. 5 (1954), 603–605. MR 66361, DOI 10.1090/S0002-9939-1954-0066361-2
- N. Jacobson, Restricted Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 50 (1941), 15–25. MR 5118, DOI 10.1090/S0002-9947-1941-0005118-0
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601 —, Une generalisation du théorème d’Engel, C.R. Acad. Sci. Paris vol. 234 (1952) pp. 679-681. G. Seligman, On Lie algebras of prime characteristic, Memoirs of the American Mathematical Society, no. 19.
- H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I, Math. Z. 23 (1925), no. 1, 271–309 (German). MR 1544744, DOI 10.1007/BF01506234 —, Theorie der Darstellung . . . II, Math. Zeit. vol. 24 (1926) pp. 328-376. E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160. H. Zassenhaus, Über Lie’sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Hansischen Univ. vol. 13 (1940) pp. 1-100.
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 82 (1956), 160-179
- MSC: Primary 17.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0079221-4
- MathSciNet review: 0079221