On the definition of significant multiplicity for continuous transformations
Author:
Earl J. Mickle
Journal:
Trans. Amer. Math. Soc. 82 (1956), 440-451
MSC:
Primary 28.0X
DOI:
https://doi.org/10.1090/S0002-9947-1956-0079074-4
MathSciNet review:
0079074
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Lamberto Cesari, Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 11 (1942), 1–42 (Italian). MR 18213
- [2] Lamberto Cesari, On the representation of surfaces, Amer. J. Math. 72 (1950), 335–346. MR 34450, https://doi.org/10.2307/2372037
- [3] Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438–456. MR 10611, https://doi.org/10.1090/S0002-9947-1944-0010611-3
- [4] Herbert Federer, Measure and area, Bull. Amer. Math. Soc. 58 (1952), 306–378. MR 49289, https://doi.org/10.1090/S0002-9904-1952-09586-0
- [5] Earl J. Mickle, Lebesgue area and Hausdorff measure, Rend. Circ. Mat. Palermo (2) 4 (1955), 205–218. MR 74497, https://doi.org/10.1007/BF02849295
- [6] Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, vol. 30, American Mathematical Society, New York, 1948. MR 0024511
- [7] Tibor Radó, Two-dimensional concepts of bounded variation and absolute continuity, Duke Math. J. 14 (1947), 587–608. MR 22593
- [8] Tibor Radó, On essentially absolutely continuous plane transformations, Bull. Amer. Math. Soc. 55 (1949), 629–632. MR 29975, https://doi.org/10.1090/S0002-9904-1949-09267-4
- [9] Tibor Radó, On multiplicity functions associated with Lebesgue area, Rend. Circ. Mat. Palermo (2) 4 (1955), 219–236. MR 74498, https://doi.org/10.1007/BF02849296
- [10] J. W. T. Youngs, A reduction theorem concerning the representation problem for Fréchet varieties, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 328–330. MR 18219, https://doi.org/10.1073/pnas.32.12.328
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.0X
Retrieve articles in all journals with MSC: 28.0X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1956-0079074-4
Article copyright:
© Copyright 1956
American Mathematical Society