On the definition of significant multiplicity for continuous transformations
HTML articles powered by AMS MathViewer
- by Earl J. Mickle
- Trans. Amer. Math. Soc. 82 (1956), 440-451
- DOI: https://doi.org/10.1090/S0002-9947-1956-0079074-4
- PDF | Request permission
References
- Lamberto Cesari, Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 11 (1942), 1–42 (Italian). MR 18213
- Lamberto Cesari, On the representation of surfaces, Amer. J. Math. 72 (1950), 335–346. MR 34450, DOI 10.2307/2372037
- Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438–456. MR 10611, DOI 10.1090/S0002-9947-1944-0010611-3
- Herbert Federer, Measure and area, Bull. Amer. Math. Soc. 58 (1952), 306–378. MR 49289, DOI 10.1090/S0002-9904-1952-09586-0
- Earl J. Mickle, Lebesgue area and Hausdorff measure, Rend. Circ. Mat. Palermo (2) 4 (1955), 205–218. MR 74497, DOI 10.1007/BF02849295
- Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, Vol. 30, American Mathematical Society, New York, 1948. MR 0024511
- Tibor Radó, Two-dimensional concepts of bounded variation and absolute continuity, Duke Math. J. 14 (1947), 587–608. MR 22593
- Tibor Radó, On essentially absolutely continuous plane transformations, Bull. Amer. Math. Soc. 55 (1949), 629–632. MR 29975, DOI 10.1090/S0002-9904-1949-09267-4
- Tibor Radó, On multiplicity functions associated with Lebesgue area, Rend. Circ. Mat. Palermo (2) 4 (1955), 219–236. MR 74498, DOI 10.1007/BF02849296
- J. W. T. Youngs, A reduction theorem concerning the representation problem for Fréchet varieties, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 328–330. MR 18219, DOI 10.1073/pnas.32.12.328
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 82 (1956), 440-451
- MSC: Primary 28.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0079074-4
- MathSciNet review: 0079074