A combinatorial lemma and its application to probability theory
Author:
Frank Spitzer
Journal:
Trans. Amer. Math. Soc. 82 (1956), 323-339
MSC:
Primary 60.0X
DOI:
https://doi.org/10.1090/S0002-9947-1956-0079851-X
MathSciNet review:
0079851
Full-text PDF
References | Similar Articles | Additional Information
- [1] Erik Sparre Andersen, On sums of symmetrically dependent random variables, Skand. Aktuarietidskr. 36 (1953), 123–138. MR 0060173
- [2] Erik Sparre Andersen, On the fluctuations of sums of random variables, Math. Scand. 1 (1953), 263–285. MR 0058893, https://doi.org/10.7146/math.scand.a-10385
- [3] Erik Sparre Andersen, On the fluctuations of sums of random variables. II, Math. Scand. 2 (1954), 195–223. MR 0068154
- [4] K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. No. 6 (1951), 12. MR 0040610
- [5] W. Doeblin, Sur l’ensemble de puissances d’une loi de probabilité, Studia Math. 9 (1940), 71–96 (French, with Ukrainian summary). MR 0005541, https://doi.org/10.4064/sm-9-1-71-96
- [6] P. Erdös, Remark on my paper “On a theorem of Hsu and Robbins.”, Ann. Math. Statistics 21 (1950), 138. MR 0032970
- [7] M. Kac, Toeplitz matrices, translation kernels and a related problem in probability theory, Duke Math. J. 21 (1954), 501–509. MR 0062867
- [8] P. Lévy, Théorie de l'addition des variables aléatoires, Paris, 1937.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.0X
Retrieve articles in all journals with MSC: 60.0X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1956-0079851-X
Article copyright:
© Copyright 1956
American Mathematical Society


