Recursive and recursively enumerable orders
HTML articles powered by AMS MathViewer
- by H. G. Rice PDF
- Trans. Amer. Math. Soc. 83 (1956), 277-300 Request permission
References
-
Alonzo Church and S. C. Kleene, Formal definitions in the theory of ordinal numbers, Fund. Math. vol. 28 (1936) pp. 11-21.
- J. C. E. Dekker, Two notes on recursively enumerable sets, Proc. Amer. Math. Soc. 4 (1953), 495–501. MR 58533, DOI 10.1090/S0002-9939-1953-0058533-7
- J. C. E. Dekker, A theorem on hypersimple sets, Proc. Amer. Math. Soc. 5 (1954), 791–796. MR 63995, DOI 10.1090/S0002-9939-1954-0063995-6
- S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41–73. MR 7371, DOI 10.1090/S0002-9947-1943-0007371-8 —, Introduction to metamathematics, New York, Amsterdam and Gröningen, 1952.
- Werner Markwald, Zur Theorie der konstruktiven Wohlordnungen, Math. Ann. 127 (1954), 135–149 (German). MR 61076, DOI 10.1007/BF01361115
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
Additional Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 83 (1956), 277-300
- MSC: Primary 02.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0083454-0
- MathSciNet review: 0083454