On a theorem of Mori and the definition of quasiconformality
Author:
Lipman Bers
Journal:
Trans. Amer. Math. Soc. 84 (1957), 78-84
MSC:
Primary 30.0X
DOI:
https://doi.org/10.1090/S0002-9947-1957-0083025-7
MathSciNet review:
0083025
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] L. Ahlfors, On quasi-conformal mappings, Journal d'Analyse Mathématique vol. 4 (1954) pp. 1-58.
- [2] Lipman Bers, Univalent solutions of linear elliptic systems, Comm. Pure Appl. Math. 6 (1953), 513–526. MR 58830, https://doi.org/10.1002/cpa.3160060407
- [3] Lipman Bers, Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math. 7 (1954), 441–504. MR 65334, https://doi.org/10.1002/cpa.3160070303
- [4] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 111–140. MR 0076981
- [5] B. V. Boyarskiĭ, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661–664 (Russian). MR 0071620
- [6] Renato Caccioppoli, Fondamenti per una teoria generale delle funzioni pseudo-analitiche di una variabile complessa. I, II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 13 (1952), 197–204, 321–329 (Italian). MR 56718
- [7] A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, https://doi.org/10.1007/BF02392130
- [8] Robert Finn, On a problem of type, with application to elliptic partial differential equations, J. Rational Mech. Anal. 3 (1954), 789–799. MR 67314, https://doi.org/10.1512/iumj.1954.3.53040
- [9] K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132–151. MR 9701, https://doi.org/10.1090/S0002-9947-1944-0009701-0
- [10] H. Grötzsch, Ueber die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes, Leipzig-Berlin, vol. 80, 1928.
- [11] -, Ueber die Verzerrung bei nichtkonformen schlichten Abbildungen mehrfach zusammenhängender Bereiche, Leipzig-Berlin, vol. 82, 1930.
- [12] -, Ueber möglichst konforme Abbildungen von schlichten Bereichen, Leipzig-Berlin, vol. 84, 1932.
- [13] M. Lavrent′ev, A general problem of the theory of quasi-conformal representation of plane regions, Mat. Sbornik N.S. 21(63) (1947), 285–320 (Russian). MR 0027342
- [14] M. A. Lavrent′ev, A fundamental theorem of the theory of quasi-conformal mapping of plane regions, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 513–554 (Russian). MR 0034842
- [15] Akira Mori, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77. MR 83024, https://doi.org/10.1090/S0002-9947-1957-0083024-5
- [16] C. B. Morrey, On the solution of quasilinear elliptic partial differential equations, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 126-166.
- [17] Louis Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103–156; addendum, 395. MR 64986, https://doi.org/10.1002/cpa.3160060105
- [18] Albert Pfluger, Quasikonforme Abbildungen und logarithmische Kapazität, Ann. Inst. Fourier (Grenoble) 2 (1950), 69–80 (1951) (German). MR 44640
- [19] S. L. Sobolev, Nekotorye primeneniya funkcional′nogo analiza v matematičeskoĭ fizike, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 (Russian). MR 0052039
- [20] S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars, 1938.
- [21] K. Strebel, On the maximum dilation of quasi-conformal mappings, Bull. Amer. Math. Soc. vol. 63 (1955) p. 225.
- [22] O. Teichmuller, Untersuchungen über konforme und quasikonforme Abbildungen, Deutsche Mathematik vol. 3 (1938) pp. 621-678.
- [23] L. I. Volkoviskii, Investigation on the problem of type of a simply-connected Riemann surface, Moscow, Izdat. Akad. SSSR, 1950. (Akad. Nauk Trudy Matem. Inst. imeni V. A. Steklova, no. 34.)
- [24] G. T. Whyburn, Introductory topological analysis, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 1–14. MR 0070161
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.0X
Retrieve articles in all journals with MSC: 30.0X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1957-0083025-7
Article copyright:
© Copyright 1957
American Mathematical Society