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BY
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A posthumous paper by the late Professor Akira Mori [15] contains im-

plicitly a solution of an important problem in the theory of quasiconformal

mappings. More precisely, using Mori's Theorem I we can show, in a few lines,

that two generally accepted "natural" definitions of quasiconformality are

equivalent. In order to make this note readable, however, we shall need more

than a few lines for a restatement of these definitions.

1. Grotzsch's inequality. The concept of quasiconformality is due to

Grotzsch [10; 11; 12] who considered primarily homeomorphisms

w(z) = u(x, y) + iv(x, y) (z = x + iy)

of class C1 with a positive Jacobian

J = uxvy — UyVX.

Such a mapping takes infinitesimal circles into infinitesimal ellipses; it is

called quasiconformal if the eccentricity of these ellipses is uniformly bounded.

This condition can be expressed analytically by either of the three equivalent

differential inequalities:

(1') max   | wxcosd + WySind \2 jS QJ,

(1") u\ +uy + vl + vl ^(q + —\ J,

i       Q~ 1 i i
(1'") |    WX   +    iWy   I        g    -     l    WX    —    iWy   I    ,

for some Q*zl. This property is conformally invariant: if w = w(z) has it, so

does the function IF(f) = F {w [/(f) ]} where F and /are conformal mappings.

Consider, in particular, a quasiconformal mapping, with constant Q, of

the closed rectangle O^xga, O^y^b onto another closed rectangle 0^u^a',

O^v^b' assuming that the vertices (0, 0), (0, a), (a, b), (0, b) are taken into

(0, 0), (0, a'), (a', b'), (0, b') respectively. A simple application of the Schwartz

inequality (cf. Ahlfors [l ]) yields the Grotzsch inequality
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a' a
(2) — iQ — ■

V b

More generally, let w be a quasiconformal homeomorphism of a domain

D onto a domain A and let RED be a topological rectangle (topological image

of the closed square with vertices cti = (0, 0), a2 = (l, 0), a3=(l,l), a4=(0, 1).

R can be mapped conformally onto the rectangle Oixia, Oiyib in such

a way that the points ai, a2, a3, a4 go into the points (0, 0), (a, 0), (a, b),

(0, b), respectively, and the uniquely determined number (a/b) is called the

modulus of R and is denoted by mod R. In view of (2) and the conformal

invariance of inequality (1) it follows that

(3) mod it i () mod w(R).

Note that topological rectangles and their moduli may be considered on

arbitrary Riemann surfaces.

2. Geometric definition. Quasiconformal mappings have proved to be a

powerful tool in the theory of functions (cf. Ahlfors [l ], Pfluger [18], Volkov-

iskii [23], Cacciopoli [6] and the references given there), especially in con-

nection with Teichmuller's extremal quasiconformal mappings [22], and in

the theory of partial differential equations (cf., in particular, Morrey [16],

Lavrent'ev [13; 14], Bers [2; 3], Nirenberg [17], Finn [8], Bers and Niren-

berg [4]). But in applying this tool it became necessary to extend the original

definition. Of the proposed generalizations two are, in a certain sense, most

general.

The geometric definition (Ahlfors, Pfluger, Mori) dispenses with all

differentiability requirements and uses directly inequality (3). According to

this definition a homeomorphism w of a plane domain D onto another such

domain or, more generally, of a Riemann surface D onto another such sur-

face, is Q-quasiconformal if (3) holds for every topological rectangle RED.

Consider now an interior function w(z) defined in a domain D. This means

that w(z) is continuous and either constant or has the following three proper-

ties, (i) The mapping w is light and open(2). (ii) In the neighborhood of every

point of D, save perhaps for a discrete set, the mapping mis a local homeo-

morphism. (iii) There exists a homeomorphism x(z) of D onto a plane domain

and an analytic function/(f) defined in x(P) such that

(4) w(z) = f[X(z)].

The three properties (i), (ii), (iii) are equivalent. The implications (iii)—>(i)

and (iii)—>(ii) are trivial. The implication (i)—»(iii) is the well known result

of Stoi'low [20]. The implication (ii)—»(iii) is an easy consequence of the gen-

eral uniformization theorem(3). A nonconstant interior function w may be

(2) Cf. Whyburn [24].

(') Cf. [3, p. 454].
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considered as a homeomorphism of D onto a Riemann covering surface of a

plane domain. Mori calls w pseudoanalytic if this homeomorphism is quasi-

conformal.

We shall say "quasiconformal" rather than "pseudoanalytic" (4) and shall

call a function w, Q-quasiconformal according to the geometric definition if

it is of the form (4) where x is a (^-quasiconformal homeomorphism and / an

analytic function. Mori himself noted that this definition is equivalent to his.

3. Analytic definition. We recall the concept of T,2 derivatives due to

Sobolev [19] and Friedrichs [9]. Let/, g, h be measurable, locally square

integrable, complex or real valued functions defined in a plane domain D. The

relations

g = fx,        h = fy in the T2 sense

mean that the following conditions are satisfied, (a) The identities

I   fcoxdxdy = —   j   I  gadxdy, I   fwydxdy = —   I   I   hcodxdy
J   J D J   J J) J   J D J   J D

hold for every function co of class Cl with compact support SED. (b) In every

compact set SED there exist functions fM of class C1 such that

ffur -ihi/r-gi'+i/r-h^dxdy^o

as w—> oo. (c) The function f(x, y) is absolutely continuous in x for almost

all values of y and iny for almost all values of x, and fx = g,fv = h almost every-

where in D.

It is known that each of the properties (a), (b), (c) implies the other two.

According to the analytic definition (Morrey, Cacciopoli, Bers and Niren-

berg) a continuous function w(z) in a domain D is Q-quasiconformal if it has

L2 derivatives satisfying inequality (1) almost everywhere.

4. Beltrami equations. Let

(5) gxx(x, y)dx2 + 2g12(x, y)dxdy + g22(x, y)dy2

be a Riemann metric defined in a domain D. A function w = u+iv in D is said

to be conformal with respect to this metric if u and v satisfy the Beltrami equa-

tions

(6') gUX    =     —    gl2VX   +    gnVy, gUy    =     -    g22VX   +    g12Vy

where

2 2

g    =  gllg22  — gli,

(') In the writer's opinion the term "pseudoanalytic" should be reserved for solutions

of generalized Cauchy-Riemann equations.
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which can be also written in the form

(6") wx + iwy = p(wx — iwy),

the complex valued function p being given by

gu — gn + 2igi2
p = -•

gu + gn + 2g

In what follows we assume that the functions g« are measurable and that

the eccentricity of the metric is bounded by Q^l, that is, that

(7') gu + gni2Qg

or, which is the same,

(7") \p\ <(Q- l)/«2 + 1).

A solution of (6) will be required to be continuous and to have L2 derivatives

satisfying the equation almost everywhere. Thus every solution of a Beltrami

system is Q quasiconformal (by the analytic definition) if the eccentricity

of the metric is bounded by Q, and conversely, every quasiconformal function

(according to the analytic definition) is a solution of an appropriately chosen

Beltrami system.

We note now some properties of a Beltrami system (6) satisfying (7).

(a) If Wi and w2 are two solutions of (6) in the same domain and wi is a

homeomorphism, w2 is an analytic function of w2.

(f3)  If w is a solution of (6) so is/(w), / being any analytic function.

(7)  In every domain there exists a homeomorphism satisfying (6).

(5) If w = u+iv is a univalent solution of (6) in a domain D, the Jacobian

J = uxVy — uyvx is positive almost everywhere, and for every measurable set

eED, w(e) is measurable and has measure

I  I Jdxdy.

These results are due to Morrey [16]. For different proofs cf. Bers and

Nirenberg [4] and Boyarskil [5]. Boyarskil's proof is based on the Calderon-

Zygmund inequality [7]; it implies that the moduli of the derivatives of a

solution of (6) are locally integrable to a power p>2, depending only on Q.

It can be shown that every measurable locally square integrable function

having L2 derivatives satisfying (6) is continuous. Hence the continuity

hypothesis may be omitted from the analytic definition of quasiconformality.

We shall show next that the two definitions are equivalent. Hence state-

ment (8) answers in the affirmative a question raised by Mori [15, §5].

5. Equivalence proof. A homeomorphism which is (2-quasiconformal ac-

cording to the analytic definition is so also according to the geometric defini-

tion. In fact, noting statement (8) the usual proof of Grotzsch's inequality
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can be repeated almost verbatim. Statement (a) now leads to the (known)

observation that the analytic definition implies the geometric.

Now let w(z)=u+iv be a homeomorphism of a domain D which is Q-

quasiconformal according to the geometric definition. Mori proved (Theorem

I) that w(x+iy) is absolutely continuous on almost all lines x = const, and

y = const.(6), and that there exists a null set EED such that at every point

of D — E, w has a differential and its derivatives satisfy (1). In order to verify

that w is a solution of a Beltrami system we must only show that its deriva-

tives are locally square integrable.

For every Borel set eED let 5(e) denote the measure of the Borel set w(e);

s(e) is a countably additive non-negative set function. Let A(z0, r) denote the

disc I z — so I <r. It is well known that the Lebesgue derivative

.,   v       ,.     s[A(z0,r)]
h(zo) = hm-

r->o        irr2

exists almost everywhere in D, and

(8) f f hdxdy ^ s(e).

Mori observed, and it is easy to verify, that

h    =    J    =    UXVy    —    UyVX

at all points of D — E. Hence, for every compact set SED we have by (1) and

(8) that

f f («* + ul + vl + Vy)dxdy ^ (Q + 1/0  f f Jdxdy

g(Q+l/Q)s(S) <+ co.

Noting statement (j3) of §4 we conclude that the geometric definition of

Q-quasiconformality implies the analytic definition.

6. An application. Mori asked [15, §5] whether Q-quasiconformal func-

tions of class C1 are dense in the set of all (^-quasiconformal functions, in the

sense of normal convergence (uniform convergence on compact subsets). The

equivalence theorem yields the affirmative answer.

Let w(z) be a Q-quasiconformal function; for the sake of simplicity we

assume it to be defined in a subdomain D of the unit disc \z\ < 1. w is a solu-

tion of (6) with some p satisfying |p| <(Q — 1)/(Q+1). We may assume that

p is defined for \z\ < 1.
By (7) there exists a homeomorphic solution W0(z) of (6) defined in | z\ < 1.

Since quasiconformal mappings are known to preserve conformal type the

image A of \z\ <1 under IF0 is not the whole plane. Let F(f) be the analytic

(5) This was also proved, independently, by Strebel [21 ].
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function mapping A conformally onto the unit disc, TfW^O)] =0. The func-

tion W(z) = F[Wo(z)] is a solution of (6) which maps \z\ <1 homeomorphi-

cally onto itself and leaves the origin fixed.

By a fundamental property of quasiconformal mapping (discovered by

Morrey, Ahfors and Lavrent'ev and, in its sharp form, by Mori)

(°) (| zi - z21 /16)« i  | W(zi) - W(z2) |   H6\zi- z2 Y«>.

W is a homeomorphism of \z\ il and we may assume that 1^(1) = 1, since

this can be achieved by a rotation.

Now let {p(7>)} be a sequence of complex valued real-analytic functions

such that

I nw \i(Q~ L)/(Q + 1),
/i(n) —* p a.e. in | z I   < 1.

For every n there exists a solution W(n) (z) of the equation

wT + iwT = pk\wT - iw?)

which is a homeomorphism of \z\ il onto itself satisfying the conditions

W(n)(0)=0, Win)(l) = 1. These functions are real analytic and each satisfies

inequalities (9). Hence we may assume, selecting if need be a subsequence,

that W-n)(z) converges uniformly to a homeomorphism Wix)(z) of | z\ i 1 onto

itself. Since, by (1),

// { I W?\'+ | W? f}dxdy i(Q+ l/Q)*

we may assume, selecting if need be a subsequence, that the functions Wxn\

Wf converge weakly to certain L2 functions which are easily seen to be the

L2 derivatives of W<°°\ It follows thatptn) { Wf — iW™} converges weakly to

p(Wx",)-iWy")), so that W<»> is a solution of (6). By §4, (a) we have that

W<-x)(z)=F[W(z)], F being analytic. But F=WM o W~l is a homeomor-

phism of \z\ il onto itself leaving 0 and 1 fixed. Hence W<-X) = W and

W-n)-^W uniformly.

Next, w(z) must be of the form w(z) =f[W(z)],f being analytic in W(D).

Let S he any subdomain of D with compact closure SED. If n is sufficiently

large, W™(S)CW(D). The function w™(z) =f[W^(z)] is (2-quasiconformal

in 5 and is of class Cl, in fact real analytic there. Clearly w<n>—>w uniformly in

S.
There are several obvious modifications of the preceding argument. These

may be left to the reader.
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