Complex analytic connections in fibre bundles
Author:
M. F. Atiyah
Journal:
Trans. Amer. Math. Soc. 85 (1957), 181-207
MSC:
Primary 53.3X
DOI:
https://doi.org/10.1090/S0002-9947-1957-0086359-5
MathSciNet review:
0086359
Full-text PDF
References | Similar Articles | Additional Information
- [1] M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307–317. MR 0086358
- [2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 0131423, https://doi.org/10.1112/plms/s3-7.1.414
- [3] André Blanchard, Variétés kählériennes et espaces fibrés, C. R. Acad. Sci. Paris 234 (1952), 284–286 (French). MR 0054320
- [4] André Blanchard, Espaces fibrés kählériens compacts, C. R. Acad. Sci. Paris 238 (1954), 2281–2283 (French). MR 0066015
- [5] H. Cartan and J.-P. Serre, Seminaire E.N.S., 1953-1954.
- [6] Shiing-shen Chern, Differential geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 397–411. MR 0045432
- [7] P. Dolbeault, Thèse (to appear in Ann. of Math.).
- [8] A. Grothendieck, A general theory of fibre spaces with structure sheaf, University of Kansas, Report No. 4, 1955.
- [9] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0082174
- [10] Shigeo Nakano, Tangential vector bundle and Todd canonical systems of an algebraic variety, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 29 (1955), 145–149. MR 0104676, https://doi.org/10.1215/kjm/1250777260
- [11] Shigeo Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1–12. MR 0073263, https://doi.org/10.2969/jmsj/00710001
- [12] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 0068874, https://doi.org/10.2307/1969915
- [13] -, Un théorème de dualité, Comm. Math. Helv. vol. 29 (1955) pp. 9-26.
- [14] I. M. Singer, (to appear).
- [15] J. A. Todd, Invariant and covariant systems on an algebraic variety, Proc. London Math. Soc. (2) 46 (1940), 199–230. MR 0002214, https://doi.org/10.1112/plms/s2-46.1.199
- [16] -, The geometrical invariants of algebraic loci, Proc. London Math. Soc. (2) vol. 45 (1938) pp. 410-424.
- [17] A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl. vol. 17 (1938) pp. 47-87.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.3X
Retrieve articles in all journals with MSC: 53.3X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1957-0086359-5
Article copyright:
© Copyright 1957
American Mathematical Society


