Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Extensions of normal bases and completely basic fields
HTML articles powered by AMS MathViewer

by Carl C. Faith
Trans. Amer. Math. Soc. 85 (1957), 406-427
DOI: https://doi.org/10.1090/S0002-9947-1957-0087632-7

Erratum: Trans. Amer. Math. Soc. 89 (1958), 559-559.
References
    A. A. Albert, Modern higher algebra, Chicago, 1937, pp. 146-216.
  • Emil Artin, Galois Theory, Notre Dame Mathematical Lectures, no. 2, University of Notre Dame, Notre Dame, Ind., 1942. Edited and supplemented with a section on applications by Arthur N. Milgram. MR 0006974
  • —, Linear mappings and the existence of a normal basis, Studies and Essays presented to R. Courant on his 60th birthday, New York, 1948. N. Bourbaki, Éléments de mathématique, Livre II-Algèbre, Chapitres, IV and V, Actualités Scientifiques et Industrielles, no. 1102.
  • J. W. S. Cassels and G. E. Wall, The normal basis theorem, J. London Math. Soc. 25 (1950), 259–264. MR 37284, DOI 10.1112/jlms/s1-25.4.259
  • M. Deuring, Galoissche Theorie und Darstellungstheorie, Math. Ann. vol. 107 (1932) p. 140. C. C. Faith, Normal extensions in which every element with nonzero trace is a normal basis element, unpublished.
  • Tadasi Nakayama, On Frobeniusean algebras. II, Ann. of Math. (2) 42 (1941), 1–21. MR 4237, DOI 10.2307/1968984
  • Sam Perlis, Normal bases of cyclic fields of prime-power degree, Duke Math. J. 9 (1942), 507–517. MR 7005
  • Ruth Stauffer, The Construction of a Normal Basis in a Separable Normal Extension Field, Amer. J. Math. 58 (1936), no. 3, 585–597. MR 1507183, DOI 10.2307/2370977
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 09.3X
  • Retrieve articles in all journals with MSC: 09.3X
Bibliographic Information
  • © Copyright 1957 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 85 (1957), 406-427
  • MSC: Primary 09.3X
  • DOI: https://doi.org/10.1090/S0002-9947-1957-0087632-7
  • MathSciNet review: 0087632