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Introduction. Let G be a field and let ¢, { be elements of some extension
field of G. One says that {—f is a specialization over § if for every polynomial
F(x)Eg[x] such that F(t) =0 we have F(f)=0. Let F(¢, x) =ao(t)x"+ - -
+a,() EG[t, x] be an irreducible polynomial in x over G(f) and let ¢—i be a
specialization over G such that a¢(¢)d(f) #0, where d(f) is the discriminant of
F, then the specialization t—I over § can be extended to a specialization

(¢ %1, - -, x)—(, &1, - - -, &) over G where (x1, * * -, %a), (%1, - - -, &) are
the roots of F(¢, x), F(i, x) respectively. Furthermore, the group H of auto-
morphisms of G(¢, &, - - -, %,) over G(#), considered as a permutation group
on 1, 2,---, n, is a subgroup of the group G of automorphisms of
G(t x1, - - -, x,) over G(f), also considered as a permutation group on
1,2, - - -, n (van der Waerden [5]).

The purpose of part I of this paper is to obtain analogous results for homo-
geneous linear ordinary differential polynomials.

Let § be an ordinary differential field of characteristic zero (i.e., a field of
characteristic zero with a given derivation) whose field of constants C is alge-
braically closed. Let ¢, - -+, ¢, &1, - - -, & be elements of some differential
field extension of &; then (4, - - -, t,)—(%, - - -, I,) is a specialization over
F if for any differential polynomial F(yi, - - -, ¥r) GEF{y,, ce y,} such that
F(t, - - -, t,) =0 we have F(f, - - -, #,) =0. The specialization (¢, - - -, t)
—(h, - -+, &) over § is generic if (f1, - - -, &)—(#, - - -, t,) is also a special-
ization over &. If G is a differential field extension of § and B is a constant
transcendental over § we may form the differential field g((8)) of all formal
power series in 3 with coefficients in G and only a finite number of terms with
negative exponents. Let f=fo+ > 2, f3:€G((B)) and let f be a zero of F(x)
Eﬁ{ } then F(fo) =0, because F(fo) is the term of F(f) of degree 0 in §,

so that f—->fo is a specialization over §. We call a specialization (¢, - - -, ¢)
—E, - -, k) over & analync if there exist r elements #;+ D >, fi;87 Eg((ﬁ))
(1=1, - - -, r), where G is some differential field extension of &, such that
(b, -+ -, )=+ Z,-fl,-ﬁf, o+, L+ D f.B7) is a generic specialization over
F.

Corollary 2 of Lemma 2 shows that if  is not a singular solution of F(y)
=0, where F(y) is the irreducible differential polynomial in & { y} of lowest
order vanishing at ¢, then the specialization t—f over ¥ is analytic.

Let L(t,y) =ao(t)y™+ - - - +a,,(t)y€‘5{t,y},Wheretdenotes (ts, « « * b)),
let ¢t —f be an analytic specialization over & such that ao(f) ¢ 0 and let
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(A1, -+ +, \.) be a fundamental set of zeros of L(Z, y); then Theorem 1 states
that there exists a fundamental system of zeros (wi, - - -, w,) of L(¢, y) such
that (¢, w1, - - -, w,)—( Ay, - - -, \,) is an analytic specialization over &.

If G is a differential field with an algebraically closed field of constants
D then G{wy, + - -, w,) is called a Picard-Vessiot extension (hereafter denoted
by P.V.E.) of G if the field of constants of G{wy, - - - ,w,)isDand (wy, - - -, wn)
is a fundamental system of zeros of a homogeneous linear differential poly-
nomial of order # (Kolchin [2]). Note that Theorem 1 does not say anything
about the field of constants of F(¢, wy, - - -, w,). In fact, as we shall show by
examples, F(¢, w1, * + +, w,) may not be a P.V.E. of F(¢) even when the field
of constants of F(¢) is algebraically closed.

Let G be a differential field extension of ¥ and let the field of constants of
F and G be C which is algebraically closed. Let t—i+ > .2, f8:€G((8)) be a
generic specialization over §. Let E be an algebraic closure of the field
C((B)) and let (w1, - - -, wn), (A1, + + -, N\n) be fundamental systems of zeros
of L(t, ), L(, y) respectively as given by Theorem 1. Under these conditions
Theorem 2 states:

(1) §¢t, w1, + - -, wa, E)isa P.V.E. of (¢, E).

(2) If GF respectively HC is the group of all automorphisms of
F(t, w1, - - -, wn, E) over §{¢, E) respectively G(A;, - - - , \,) over G (identified
with an algebraic matric group with coefficients in E respectively C by the
given fundamental system of zeros (wy, - + -, w,) respectively (A, - + -, \,)),
then the analytic specialization (¢, w1, + + +, w,)—(F, Ny, - - -, N\n) over F in-
duces an analytic specialization of the elements of a certain subgroup K
of GF which is a group homomorphism of K onto HC. In particular if the
field of constants of F{¢, wi, - - -, w,) is C then HC is a subgroup of G¢.

Theorems 3, 4, and 5 give sufficient conditions for the existence of an ex-
tension of an analytic specialization t—f over F to a specialization
(twy, - -, w)—=E N, - - -, N,) over F where §{t, w,, - - -, w,)isa P.V.E. of
F(t), under the added assumption that the field of constants of F{¢, {) is the
same as that of &, namely C.

In part II we introduce the notion of a “generic equation with group G”
for homogeneous linear differential equations of order n. This is analogous to
what E. Noether did for algebraic equations (E. Noether {4 ]). Roughly speak-
ing, given an n Xn algebraic matric group G we seek an nth order homo-

geneous linear differential polynomial L(t, y)EC(, - - -, t.){y}, where
t=(t, -+ -, ta) is a family of n differential indeterminates over C such that
there exists a fundamental system of zeros (31, - - -, y,) of L(¢, y) with the
following properties:

(1) Cn, - -+, yay is a PV.E. of C{ty, - - -, t.) with group of auto-
morphisms G.

(2) For any specialization (4, - - -, t,)—(, + + -, f,) over C which can

be extended to a specialization (t, + + ', tn, y1, * * *, Ya)—(, - -+, In
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$1, © + +, Ja) with Cly, - -+, bny 51, - - -, Jny @ PV.E. of C{y, - - -, #,) the
algebraic matric group H of C{f, + - -, fa, 51, - -+, Fu) Over C{fy, - - -, L) is
a subgroup of G.

(3) If §is a differential field with field of constants Cand if T\, - - -, Aa)

is a P.V.E. of § with group HCG, where (A, - - -, A,) is a fundamental sys-
tem of zeros of a homogeneous linear differential polynomial L(y) Gﬂ‘{y} of
order 7, there exists a specialization (f, + + -, t,)—(, - - -, f,) over C such
that £,€F (1=1, - - -, n) and L, v) =L(y).

By an argument similar to that which E. Noether used, we show that the
existence of a “generic equation with group G” implies that the differential
subfield of C{y1, - - -, ¥.) consisting of the invariants of G is purely differ-
entially transcendental over C. We then proceed to show how to construct a
“generic equation with group G” of any order » for the following groups G:

(1) Full linear group.

(2) Unimodular group.

(3) Reducible group consisting of all nonsingular matrices (a;;) ¢, §
=1, -+, n)such that ayy1,m=0 (k=1, - - -, s;m=1, - - -, r;r+s=n).

(4) Orthogonal group.

(5) Symplectic group.

I wish to take this opportunity to thank Professor Ellis R. Kolchin for
the numerous valuable suggestions and criticisms that he has given me, with-
out which this paper would not have been possible.

Notation. Throughout this paper § will stand for an ordinary differential
field of characteristic zero whose field of constants C is algebraically closed.
We shall use B, D, E for fields of constants which contain C. G, H will denote
algebraic matric groups with coefficients in C; G¥, HE will stand for algebraic
matric groups with coefficients in E. [F] means the differential ideal gener-
ated by F, {F} means the perfect (radical) differential ideal generated by F,
in some specified differential ring. By the separant of a differential poly-
nomial F(y) in an indeterminate y we mean d F/dy™ where r is the order of F.

b, - - -, ¢t will always denote elements of a differential field extension of &;
the point (4, - - -, t,) will frequently be denoted by ¢t. W(y,, - - -, ¥,) will
always stand for the Wronskian of yy, « + -, y,.

I. SPECIALIZATIONS AND P.V.E.
1. Fundamental systems of zeros.
LEMMA 1. Let (w1, - - -, w,) be a fundamental system of zeros of a homogene-
ous linear differential polynomial L(y) EF { y} of order n. Let the field of con-
stants of F{wy, - - -, wa) be DD C and let D be the algebraic closure of D. Then

there exists a fundamental system of zeros p;= Z;Ll a;w; (t=1,---, n) of
L(y) such that F(u1, - - - , un) is @ P.V.E. of § and a;;ED (1, j=1, - - -, n).

Proof. Of all fundamental systems of zeros of L(y) let (my, - - -, m,) be
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one such that degree of transcendency of F(my, - - -, m,) over & is as small as
possible. By Kolchin’s existence theorem (Kolchin [1]) F(m, - - -, m,) is a
P.V.E. of §. Also, m;= Y 7, bijw; where each b;; is a constant. There, obvi-
ously, exists a specialization (bs;)—(as;) over F(wy, + - + , w,) with each a;;ED
such that determinant (a;;)#0. Let u;= D 7., aiw;; then any differential
polynomial PEﬁ{yl, cee, y,,} which vanishes at (m, - - -, ) will vanish
at (41, + + *, pn), so that (u1, + - -, ua) is a specialization of (&, - - -, m,.) over
¥. Hence the transcendence degree of F{u;, - - -, un) over § is =< that of
F(m, - - -, m.); since the latter is minimal, the two transcendence degrees
are equal, so that (u1, - + -, ua) is a generic specialization of (wy, - -, 7a)
over §. Hence F(uy, - - -, pny is a P.V.E. of § and u;= D_asw; (a;;ED).

COROLLARY 1. Let L(y)EEF{ y} be a homogeneous linear differential poly-
nomial of order n. Let (wy, - - -, w,) and (mwy, - - -, 7a) be two fundamental
systems of zeros of L(y) each generating a P.V.E. of § and let G and H be their
respective groups, each identified with an algebraic matric group by the respective
fundamental system. Then there exists an isomorphism of F{wi, + + -, Wa) onto
F(mwy, - - -, way over § and there exists an invertible n Xn matrix S over C such
that H=SGS™.

Proof. Let (uj, - - -, un) be a fundamental system of zeros of L(y) with
degree of transcendency of F(ui, -+ - -, un) over § as small as possible. Let
pi= O 31 bijw; (i=1, - - -, n). Then as in the proof of Lemma 1 there exists
a generic specialization (A, - - -, N,) of (u1, - - -, m.) over § such that
N = Dagw; G =1,---, n) with each a;; € C, so that Flwy, - - -, wn)
=F(\;, - - -, N\, and the matric group of F(\y, - - -, \,) over § is T7!GT
where T = (a;;). Since (A4, - - -, \.) is a generic specialization of (u1, + + +, ua)
over &, F{u1, - * +, Ma) is isomorphic to F\;, - - -, \) =F (w1, - - -, wa) and
the group of F{ui, « - -, way over § is also T7'GT. By the same argument
F(my, - - -, ) is isomorphic to F{ui, + - -, u.y and the group of Flui, - - -, un)
is similar to H. Hence ${(m,, - - -, m,) is isomorphic to F{wy, + - + , w,) and H is
similar to G, i.e., is of the form SGS-1.

COROLLARY 2. Let (w1, - - -, w,) be a fundamental system of zeros of a homo-
geneous linear differential polynomial L(y)ES’{y} of order n. Let the field of
constants of F{wi, - - -, w.) be DDC. Let D be the algebraic closure of D. Let
= Z;Ll bijw; (1=1, - - -, n) be a fundamental system of zeros of L(y) such
that $(m, - -+, o) is @ P.V.E. of §. Then there exists a generic specialization
(1, - - oy W)= (s, © + v, pa) OvEr § where pi= D 1, aijw; with each a;ED.

Proof. By Corollary 1 the transcendence degree of all P.V.E. of § associ-
ated with L(y) over § are equal. Hence degree of transcendency of
F(my, + - -, ) over § is least. Then, as in the proof of Lemma 1, there exists
a generic specialization (my, - - -, w.)—(u1, -+ -, Ma) over F such that
M= Z?—l @iW; with a;,-eﬁ.
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COROLLARY 3. Let the field of constants of F(s, 5) be C and let s—3 be a generic
spectalization over §. Let (\y, - - -, Nx) be a fundamental system of zeros of
L(s, y) =ao(s)y™+ - - - +a.(s)yEF(s){y} such that the field of constants of
F(s, 5, A1, * + +, Aoy s C. Then there exists a fundamental system of zeros
(1, -+ -y ma) of L(5, y) such that (s, Ny, - -+ , XNa)—(5, 41, * * +, Mn) 35 @ generic
specialization over § and the field of constants of F(s,5, N1, - * + , Nay 1, * * *  tn)
is C.

Proof. Let (w, - + -, w,) be a fundamental system of zeros of L(3, y) such
that the field of constants of F(s, §, Ny, - - -, Ao, w1, - - -, w,) is C. Let
(s, N, - - -, A\)—(5,m, + - -, m,) be a generic specialization over § (extending
the generic specialization s—>5over §). Then F(5, w1, - « + ,wa), FE, 71, -« + , Tn)
are P.V.E. of 9(s> with ;= D 7_; bsw; where b;;&EDDC. By Corollary 2 there*
exists a generic specialization*(my, -« -+, T.)—(u, - - -, ua) over $(5) where

= Y 7., aiw; with a;;E C; so that the field of constants of

g<sysy>‘lr"'»kmﬂ'lr"'lﬂn>

is C. Also, (s, A1, - -+, XNa)—>(5, m, -+ -, ma)—(5, m1, - - -, Ma) are both
generic specializations over §. Hence (s, A, -+ +, No)—(5, pa, - - -, Ma) is @
generic specialization over &. .

2. Analytic specializations. A specialization (4, - - , t,)—(&,, - - , &) over
§ will be called analytic if there exist » formal power series u; =%+ 2 i, fi;8°
. (=1, - - -, r), with coefficients f;; in some differential field extesmsion G of &,
in a constant  transcendental over G, such that (&, -+ -, {)—(u, + * -+, 4,) 15
a generic specialization over §. If #, - - -, ¢, are differentially algebraically
independent over § any specialization (1, - - -, t,)—(&, - - -, &) is analytic,
since (&, - - * , t—(h+20, - - -, t,+2.8), where z;, - - -, z, are r new differ-
ential indeterminates, is a generic specialization over &.

LeEMMA 2. Let F(y) GEF{ y} be an irreducible differential polynomial of order
n. Let t be a generic zero of the general component of F(y). Let t—t be any
specialization over § such that the differential polynomial K(2) formed by the
sum of terms of lowest degree of F(i+2)EF(I){z} is of order n. Then the special-
ization t—i is an analytic specialization over .

Proof. Let M(2) be an irreducible factor of K(2) of order # and let f; be
a generic zero of the general component of M(2); then by the Ritt power
series process (Ritt [3]) there exists a zero u of F(i+z2) of the form u=f,8
+ Z, 2 f,B'“ where the u; are fractions with a common denominator such
that 1< - - - <p;<piy1. Now, if any differential polynomial P(z)E‘.‘F(t){ }
vanishes for z=u, the sum of the terms of lowest degree must vanish for
z=f1; since f1 can not satisfy any differential equation of order less than # -
neither can . Also, I+u=1I+4 ) ;. fif* is a zero of F(y). Suppose there
existed a differential polynomial Py)Es {y} of order less than # which van-
ished for y=7+4u; then P({+32) Eff(t’){z*} would be of order less than » and
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would vanish for z=wu, which is impossible. Hence {+u is a generic zero of the
general component of F(y). Since the u; have a common denominator we can
replace B by a power of itself to obtain a power series {4 - - - with the re-
quired properties.

COROLLARY 1. Let ty, - -+, by, b1, - - -, I, be elements of some differential
field extension of & and let (4, - - -, t,—))—> (b, - - -, 1) be an analytic special-
ization over F. Let t, be a generic zero of the general component of an irreducible
differential polynomial

F(tly Y tr—ly y)eg{tly Tty tr—ly 3’}

over §(t, - -, t,—1). Let Fbe of order niny. Let (t1, - - - , t,)—(&, - -+ , 1) be
a specialization over § such that the differential polynomial K(z) formed by the
sum of terms of lowest degree in F(ty, - - -, t,_1, I,+2) is of order n. Then the
specialization (4, - - -, t)— (@, - - -, ) over F is analytic.

Proof. Let (tl, sy l,_l)—>(u1, core, u,_l), uj=t-j—|— Ziil ij,Bi (]—_—1, oy,
r—1), be a generic specialization over §. Let 13 be the term of lowest degree
in 8in F(uy, - - -, t,, £;). Let M(2) be an irreducible factor of order # of
K@) +veEF(, - - -, t, (f,-j)){z}. Let fi, be a generic zero of the general com-
ponent of M(z) and let uy=sm™!, or 1 according as s#0 or s =0 where m is
the degree of K(z). By the Ritt power series process there exists a zero u, of
F(u1, -+, t,_1, y) of the form u, =, +fi,B+ 2 iy fiB* where the p; are
fractions with a common denominator such that u; <u;,:. By the same argu-
ment as above the specialization (¢, - - -, t,)—(u1, - - -, %,) over F is generic
so that the specialization (4, - - -, t,)—(&, - - -, £) is analytic.

COROLLARY 2. Let t, -+ + , ty b1, - - -, br_1 be as in Corollary 1, and let I, be
a nonsingular solution of F(y, - - -, by, y)EFE, - - -, L) {y}. Then the
specialization (4, - - -, t,)—, - - -, §,) over § is analytic.

Proof. Let S(y) EF (i, - - -, k1) {y} be the separant of F(f, - - -, #r_1, ¥).
Then F(&, - - -, L, L42)=S({)2™+ « - - . Since S(f) #0 the sum of terms
of lowest degree in F(&, - - -, I,4, {,+32) is of order #n. By Corollary 1 the
specialization (¢, + + -, t,)—(h, - - -, &) over F is analytic.

ExaMmpLE 1. Let §=C, let F(y) =y'2—4y3 and let ¢t be a generic zero of
{F} ({F} is a prime differential ideal, for 0 is the only singular zero of F and
by the low power theorem (Ritt [3]) 0 is in the general manifold of F), and let
{=0 then t—f is an analytic specialization over §. For u=0+82(1 —8x)?
=) oo (mn+1)x"B+? (where ' =1) is a generic zero of {F}

The following example shows that the conditions imposed in Lemma 2 on
f for t—1 to be an analytic specialization over F are not superfluous.

ExAMPLE 2. Let $=C and let F(y) =yy"” +9'. { F} is a prime ideal for the
same reason as given in Example 1. Hence 0 is in the general manifold of F.
Let u=0+ Zf.ﬂ" be a zero of F(y); then (fi)1si<» are constants. Indeed, fi
must be a zero of ¥’ which is in the term of lowest degree in F(y), so that fi
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must be a constant; assuming f; (¢=1, - - -, n—1) are constants, then F(u)
— (2B (S eafl'8) + 3 2 fL B, the coefficient of B is f!, so that f; is
a constant. Hence % is a constant and can not be a generic zero of { F}. Note,
however, that by Corollary 2 to Lemma 2 if ¢ is any nonzero constant there
exists a generic zero % of { F} of the form u=c+ D i, fi3%.

3. Specialization of homogeneous linear differential equations.

THEOREM 1. Let L(t, y) =ac(t)y™+ - - - +an(t)y€9’{t, y}. Let t—t be an
analytic specialization over § such that ay(f)0 and the field of constants of
F(t) is C. Then for any fundamental system of zeros (wi, - - -, w,) of L(, y)
there exists a fundamental system of zeros (wy, - - -, w.) of L(¢, v) such that
tm, -, m)—@E 0 - - -, w,) s an analytic specialization over F.

Proof. Let t—i+ Y .-, fi8¢ be a generic specialization over ¥ and let
L<f + 20 fiB, y) = 22 giBiy
=1 =0 j=0

where each g,;€EF(#, (fi)isico) Let Nu=wr+ D mei himB™ (hxm to be deter-
mined). Then

2(14+ ion) = £ E g (o + 5 ot

1=l 1=0 j=l1 n=1

= L(I, wi) + Z Z gt:ﬂl o0 + Z Z 8ii Z h(n—') e

=0 j=0 =0 j=0 m=1

=22 (gf.w;n_') + X g,,hx(:,. ”)

i=0 s=1 jtm=s

> z( T e 4 g™ )]a

s=1L =0 \j4+m=s

=2 Zg.oh(" Y4 Z( S gk b gaer )]ﬁ

1L =0 1=0 \j+m=s;ms

=3 LG, b + > Y gl g™ "] ge.

s=1 L. 1=0 j+m=s;m<s
We choose Ay, successively (s=1, 2, - - - ) to be solutions of
- L (n—1) (n—1)
L(t, y) = — Z( E githem + giswi ) (k=1,---,m).
1=0 \j4+m=s;m<s

Then L(i+ Zfiﬁ", M) =0 (k=1, . - -, n) and the Wronskian W(\,, - - - , \,)
#0, for W(wy, « + +, w.) #0. Now any differential polynomial

P(t—+ Zfiﬁiv Yy vyn) Eg{t--'l- Zfiﬂi; Ny, t ot yy»}
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which vanishes for y;=\; (¢=1, - - -, #) must have the property that
P, wy, - -+, w)=0. Since t—i+ D_;, fif is a generic specialization over &
there exists (my, - - -, m,) such that (¢, 1, - - -, T)—=@E+ 2 fB5 Ny - - -, )
is a generic specialization over §. Hence (¢, my, « - -, ma)—(f, w1, =« -, w,) is
an analytic specialization over §.

Note. The hy, are solutions of linear differential equations over

3:6: (fi)lst'<ooy hklr M hk,a—l)-

Hence it is possible to choose the %, such that the field of constants of
F(I,(f)15i<emr Pks;150<w015k5n) IS contained in B where B is the algebraic closure
of F(t, (f)isicew)-

If G is a differential field with an algebraically closed field of constants,
and (m, - - -, 7, is a fundamental system of zeros of L(y)=acy™+ - - -
+a.y€G{y} such that g{m, - - -, m,) is a P.V.E. of G; then by the algebraic
matric group of §(m, - - -, m,) over G we shall always mean (without stating
it explicitly) the algebraic matric group associated with the fundamental
system of zeros (my, * - -, Ta).

TueoREM 2. Let L(t, y)=ao®)y™+ - - - +a.(t)yEF{t, v}, let t—1
=14+ D 5 fBibeageneric specialization over § such thatao(f) #0, let (wy, « - -, W)
be a fundamental system of zeros of L(§, y) such that the field of constants of
F(E, (f)igicor @1, * * *, Way 35 C, and let HC be the algebraic matric group of
F(¢, (fa), w1, -+ -, way over T, (f:)). Then there exists a fundamental system of
zeros (my, - - -, ™) of L(t, y) and an algebraically closed field of constants EDC
such that:

(1) The field of constants of 5{t, E)is E,and (t, E,m, - - - ,ma)isa P.V.E.
of §(¢, E), with the algebraic matric group denoted by G=.

(2) (¢, m, -+, T)—E w1, - - -, wa) 15 an analytic specialization over .

(3) There exists a subgroup KE of GE such that the specialization in (2) in-
duces simultaneously a specialization (b;;)—(bi;) over F of all the elements (bi;)
of KE such that the mapping (bi;)—(bi;) is a group homomorphism of K% onto
He,

Proof. By Theorem 1 there exists a fundamental system of zeros

(wy, -+ =, ma) of L(t, y) such that (¢, m, - - -, m)—>(F, w1, - - -, wa) is an
analytic specialization over F; therefore there exists a generic specialization
¢t m, -, )=+ e fiBY N, - - -, \a) over §, where \;=w;+ 22, gi;8°
(j=1, - - -, n), where the field of constants of F(f, (fi)1zi<wr (gi))15i<w15i<0)
is C.

Let the field of constants of F(I, A, - - -, N\,) be B. If b& B then
b € 5, (f)1sicer (id)1sicm15i5n)((B));
(b= nskb =2 ript=0,r{ =0, EC)
so that
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b e C((B).

Let E be the algebraic closure of C((8)); then the elements of E are frac-
tional power series in 8, with coefficients in C, having the property that only a
finite number of terms with negative exponents have nonzero coefficients,
and that the set of all exponents which appear in terms with nonzero coeffi-
cients have a common denominator. Now F(E, ¢, A1, - - -, \s) is a P.V.E. of
F(E, t) (Kolchin [2]). Let GE denote the algebraic matric group of auto-
morphisms of this extension.

Let (as) €EHC. Then (wi)— (D) -, apw;) (=1, - - -, n) is a generic spe-
cialization over F(f, (f:)1si<). This can be extended to a generic specialization

n
((wr) 15k5ms (8ii)15i<e0,157i50) — << 2 aik“’i) ) (sii)lsi<oo,lsisn>
1sksn

=1
over F{f, (fi)15i<s). Obviously, then
(wk + > gnﬂ') - ( > apwi+ Z Sik/3'>
=1 1gksn i=1 =1 1skgn

is a generic specialization over F(+ D o, fiBi)=F(). Since each gij, si;
(1£7<o,12j<n) is a zero of a linear differential polynomial we
may assume, by Corollary 3 of Lemma 1, that the field of constants of

Flwy, + * + Oy (gi)1si<onsisns (Si)1si<wonsjsn) is C.
Let o be the isomorphism of F{¢, A1, - - -, N\,) over F(¢) such that
o\r = Z apw;+ E sikBt 1=k =Zn.
=1 i=1

Since Ay, -+ * -, N\a is a fundamental system of zeros of L(f, y) there exist
constants b;; such that

ohe = D bk =D bp (“’i+ > guﬁ‘)-
j=1 i=1 =1

Differentiating we find D _7.; b;;\™ =A™ (0<m <n—1). Solving these linear
equations we obtain

_ W()‘lx © oty Ny, oM, Nign, =0 0, )‘n)

ik =
Wk, -+, \a)
n
W(OJ], Tty Wiy Z AmkWmy Witly * * * wn)'l‘ tte
m=1

Wiy, -, wn) + - - -
=ap+ -,

where the unwritten terms all have degree >0 in 8. Thus
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bir € F(w, =+, wa, (85), (5:2))((B)),

whence (since ;i is a constant), b, C((8)). Moreover, every term of b, of
degree <0 in 3 has coefficient 0, and the coefficient of degree zero is aji:

bir = ajk + 2 i (cise € 0).

1=l
Therefore o= (b;x) is an element of the algebraic matric group of F(E, ¢,
A, - - -, A over F(E, t), that is s EGE.
Let K% be the set of all elements (b;x) EGE such that each b is of the
form b+ D 1oy cipB¢, where ¢;3 € C and (b;;) EHC; then K¥ is a group and
the mapping (b;x)—(b;x) is a group homomorphism of KZ onto H€.

Since (¢, 71, + - -, wa)—(f, N1, - - ¢+, N\,) is a generic specialization over &
we may identify the field of constants of (¢, m, - - -, 7,) with the field of
constants of F{t, Ny, - - -, N,), so that the group of (¢, E, m1, - - -, w,) over
§(t, E) is GE.

ExaMPLE 1. Let F= C=field of complex numbers and let ¢ be a transcen-
dental constant over §. Let =0 then t—0--8 is a generic specialization over
§. Let L(t,y)=y"" —3ty’'+2t*y, L(0+B, y)=y""—3By'+2B% and L(, y) =y"".
Let wi=1, we=x, 1 =65, my= (e?*—¢f*)3~1 then

©  yigi ©  (2g)iHl — gitl
= M=t ), ———— .
T wl+§ P 2 2 2 T D) B
Let E be the algebraic closure of C((8)); then the algebraic matric group of
E(ef=, e**) over E consists of the set of all matrices

a 0
( ) witha € E

0 a?

and a>0. Hence the algebraic matric group G¥ of E{m, m;) over E consists of
the set of all matrices

a (a*— a)p! .
( withae € Eanda # 0,
0 a?

which is the same as the set of all matrices

<1 + b8 b+b2ﬂ)
0 (14 6)*

The algebraic matric group H€ of §(1, x) over § consists of the set of all

matrices
(1 c) cc
c .
0 1

withd & Eand b # — 7L
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Here KZ consists of those matrices

<1+bﬁ b+bze)
0 (4088

for which b has order =20 in 8.

The algebraic matric group H¢ of Theorem 2 is the group of all automor-
phisms of F{f, (fi)igicw» @1, * * * , Wa) over F(, (fi)). HC is a subgroup of the
algebraic matric group N€ of automorphisms of F(f, wi, - - -, w.) over F().
The following example will show that if (5;;) &N¢ and (b;;) & HC there may
not exist (b;;) €EGE such that (¢, m1, - - -, T, (bi))—(E w1, - - -, wa, (bi))) s a
specialization over &.

EXAMPLE 2. Let § = C=field of complex numbers. Let ¢t =e=, {=0, I=0+/B
=0+e28 and let L(t, y)=y""— [(14+212)e=+1]y’' +2!/2%?2*y; then t—f is an
analytic specialization over §. For the differential polynomial, over &, of
lowest order which vanishes for y =t is y’ —y so that t—1 is a generic special-
ization over §. L(t, y) has a fundamental system of zeros (e, e‘z)m‘z). The
algebraic matric group of (e, e, ezm‘z) over F(e) is the full diagonal group;
for the differential equation of lowest order that e satisfies over F{e®) is
y’—e*y =0, and the differential equation of lowest order that 2" satisfies
over F(e*, ) is y'—21%=y=0. Similarly, the algebraic matric group of
F(1, &, 2”8y over (i) is the full diagonal group, since (¢, e, e2"é)
—(1, &, e”mﬁ‘z) is a generic specialization over §. Now, L(f, y)=y'" —y’
which has w; =1 wy=e¢* as a fundamental system of zeros.

with b € E

Let
’ 0 eir [
m=e =14+, .ﬁ )
=1 !

gt _ Lo (@) — e
me = (&2 B — B)(2112 4 1)B-1 = % + Z;; (212 — 1)4!

so that (¢, m1, m2)—(0, wi, we) is a specialization over . F(I, m, m.) is not a
P.V.E. of §(t), for B which is transcendental over F(t) belongs to F(¢, m, m2),
(B=mut(mws —21%myt)~1). Let E be the algebraic closure of C((8)); then the
algebraic matric group G¥ of E(t, m, m) over E{t) consists of the set of all
matrices

(a (b — a2+ 1

0 b ) withe, b E Eand g, b # 0

which is the same as the set of all matrices

(1 +a8 (b—a)(2'7+1)

0 L4 58 ) with e, b €E Eand g, b # — g\
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The algebraic matric group N€ of F{wi, wy) over § is the set of all matrices
of the form

10
withd & C b 5 0.
o 3) c
Since f=e* F{f, w1, we) =F(f) so that HC is reduced to the identity matrix. It
is easy to see that if (b;;) € N€ and is not the identity matrix there does %ot
exist (b;;) EGE such that (¢, m, w2, (bs;))— (2, @1, wy, (by;)) is a specialization
over J.

COROLLARY. Let the field of constants of &, F{t) and F{f, (f:)15i<x) be C, let

L(t, y) be as in Theorem 2, and let (¢, w1, - - -, To)—(@E, w1, - - -, w,) be an
analytic specialization over §, where §(t, my, - - -, m,) is a P.V.E. of F{t) with
algebraic matric group G and F{E, (f)isicws @1, * * +, wo) s a P.V.E. of

T, (fi)1si<w) With algebraic matric group H. Then HCG.

Proof. The algebraic matric group of (¢, w1, - - -, m,, E) over (¢, E) is
the algebraic group G¥, that is, is defined by the same set II of polynomials
with coefficients in C as defines G. Let (b;;) € H; by Theorem 2 there exists a
(b:;) EGE such that (b:;)—(b;;) is a specialization over § and hence over C.
Since (bs;) is a zero of II, so is (d;;), so that ;;&G.

REMARK 1. If the (fi)i5ice©FE) then F{E (fi)isicw) =F () so that the
group of §(¢, wy, - - -, w,) over F({) is HCG. This condition is, obviously,
satisfied if (¢, « - -, ¢,) =t are r differential indeterminates over ¥.

REMARK 2. Let the field of constants of F(¢, £} be C where {—f is an
analytic specialization over §. Let (1, - - -, m,) be a fundamental system of
zeros of L(t, ¥) =ao(t)y™~+ - - - +a.()yEF{t, y} such that a,() =0 and
¢, w1, - - -, ey is a P.V.E. of §(¢). We wish to show that except for certain
singular cases the analytic specialization {—% over § can be extended to an
analytic specialization (¢, my, - - -, wo)—(, #1, - - -, #2) over F. For, let
F;(¢, w1y« +, i, y)EG{t, MLy 0ty Ty y} be the irreducible differential
polynomial over §{¢, w1, - - -, mi—1) of lowest order in y which vanishes for
y=m; Suppose that we have already found (#, - - -, #:.1) such that
¢, m, -, mia)—@E #, - - -, ®io1) is an analytic specialization over §
where (#1, - -+, #i1) are linearly independent and the field of constants
of §{, #1, - - -, 1) is C. Let S; be the separant of F; with respect to y and
let W(1T'1, Coeey TMiel, y)S.(t-, T * ° 1?,-_1,y)€E {F,-(t, Ty, * 0, 1T-,~_1y}. Then
we may choose #; to be a zero of Fi(f, @1, - -, @, vy) such that
W(#w, « - -, ®)-Si(#1, - - -, #:) #0. Furthermore #; may be so chosen that
(i, #1, - - -, 7:) has the field of constants C. By Corollary 2 of Lemma 2 the
specialization (¢, #1, - - -, mi)— (@, 71, - - -, %) over ¥ is analytic.

4. Extension of specializations. Throughout the rest of this paper we shall
assume that the field of constants of &, F(¢, £) is C.
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TueoreMm 3. Let L(¢, y)=ao(t)y™+ - - ~+an(t)y€€F{t, y} and let t—17
=i+ D o, fiB be a gemeric specialization over F such that ao(f) =0. Let w be
any nongero solution of L(t, y) =0 such that the field of constants of (¢, w) is C.
Then the following holds:

(1) There exists N\=87(D 1m0 gB%), g0%0, r an integer, such that (t, m)— (I, \)
is a generic specialization over F:

(2) either there exists an element w such that (¢, m)—(, w) s a specialization
over §, where the field of constants of F(, w) is C or else (¢, 71)— (%, 0) is a spe-
cialization over §;

(3) there exists a nonzero solution w of L(f, y)=0 such that (¢, ='z~1)
— (I, w'w™Y) is a specialization over § and the field of constants of F(i, w) is C;

(4) if the field of constants of F(f, (fi)isi<w) 35 C then the specialization
(t, m)— (¢, w) over F of (2) and (3) is analytic.

Proof. Let the field of constants of F(¢, (f;)) be B2C. Let (wy, - + -, ws) be
a fundamental system of zeros of L(f, ¥) such that the field of constants of
F(, wi, - -+, w,y is C. By Theorem 1 there exists a fundamental system of
zeros e =i+ D m_1 gemB™ (=1, - - -, n) of L(¢, ). We may assume that
the algebraic closure of the field of constants of F(, w1, « * , Wa, (fi)15i<00
(gkm)15m<e;15ksn) 1S B, as we have noted at the end of the proof of Theorem 1.
Let D be the algebraic closure of the field of constants D of F(f, Ay, - -+, o).

Let m be any zero of L(¢, y) such that the field of constants of (¢, =) is C.
Let (¢, ¥)—(%, \) be a generic extension of the specialization t—7 over §. Then
A= D> 1, b\; where each b; is a constant. By Corollary 2 of Lemma 1 we may
assume that ;€D (j = 1, - - -, n). If b is any element of D we may write
b=PQ~! where P, QESF(?){)\I, cee, )\,.} ; it follows that & may be expanded
into a power series in 8, having integral powers a finite number of which are
negative, with coefficients belonging to F(7, wy, - -+, wa, (fi), (gkm)), i.e. with
coefficients belonging to B. Consequently any element of D can be expanded
into a power series with fractional powers and coefficients belonging to B.
Replacing B8 by a suitable power of itself we may lose no generality in sup-
posing that by, - - -, b, may be expanded into power series b, =[" 3o diife
(each d;;EB, d;o=0, r; integers). Therefore we may write A= D o; b\;
= > ier (djw)B+ - - - where r=min (ry, - - -, 7,) and J is the set of all
integers j with 1<j<n and r;=7. If r=0 then (I, \) =, X jes djw;) is a
specialization over §. But there obviously exists a specialization (dio, * * *, dno)
—(droy * -+, dno) With d;oEC and d;o7#0, so that Y ;es djw;=w0. There-
fore (¢, m)—(f, w) is a specialization over ¥ and the specialization is analytic
if B=C. If r>0 (¢, m)—(£, 0) is an analytic specialization over §. If <0
then (¢, 7 1)—(7, A=1)—(¢, 0) is an analytic specialization over &.

Also, MA"1=8-"A(8~"A)~! and since the lowest power of 3 in 87"\ is zero
there exists a nonzero specialization over § 3~"A—w, and this specialization is
analytic if B=C. Hence (¢, NA"1)—(I, w'w™!) is a specialization, analytic
specialization, over & according as BDC or B=C.
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COROLLARY. Let ¢, ¢, T, L(¢, y) be as in Theorem 3 and let (w1, - - -, T,) be
a fundamental system of zeros of L(t, y) such that F{t, m, - - -, w,)is a P.V.E.
of §(t) with algebraic matric group G which contains the full diagonal group.
Then the analytic specialization t—1i over F can be extended to a specializa-
tion (t, w1, - - -, T)—(, wi, - ¢ -, w,) over F where the field of constants of
F(, i, » - -, wa)is C. If the field of constants B of F(f, (fi)1gi<w) equals C then
the specialization (¢, w1, - -+, m)—(, wi, -+ -, w,) over F is analytic.

Proof. By Theorem 3 there exists (wy, - - -, w,) w;#0 (=1, - - - , ) such
that (¢, w/ w7t - - -, T ) > (@, w0, - - -, w)w;Y) is a specialization over
%, and the field of constants of F(f, wi, - - -, w,) is C. Since G contains the
full diagonal group the differential equation of lowest order which =, satisfies
over §{¢, wimiY, - - -, wiwa Y, m, - -, i) is ¥ —w!w7ly=0. Since w; is a
solution of ¥y —w/wily=0 (¢, w7, - - -, w/w7Y, m, - - -, m)— (@, wl il

<y, w w7l W, - - -, w;) is a specialization over §. If B=C then the spe-
cialization (¢, w{wi?, - - -, m/w)—>(@¢, wlwil, - -, w/wl) over F is
analytic and by Corollary 2 of Lemma 2 (¢, w1, - - -, m) =, @y, - - -, w,) 1S
an analytic specialization over .

This corollary does not say that wi, + - -, w, are linearly independent. In
fact, as we shall show by example, it may be impossible to find a linearly
independent system of solutions (wi, - -+, w,) of L({, y) such that
(¢, m, - - -, w)—( w1, - - -+, w,) is a specialization over §. However, if the
algebraic matric group G of F{¢, m, - - -, m,) over F(t) contains the full
triangular group then we have:

THEOREM 4. Let t, 1, {, L(t, y) be as in Theorem 3 and let (w1, - - -, m,) be a
fundamental system of zeros of L(t, y) such that F(t, w1, - - -, wa) is a P.V.E.
of F(t) with algebraic matric group G which contains the full triangular group.
Then there exists a fundamental system of zeros (wy, - - -, wa) of L(Z, ) such that
S, wy, -, wayisa P.V.E of () and (¢, m, - -+, ma)—(f, w1, - - -, w,) 15
a specialization over §. If the field of constants B of F(I, (fi)15i<=) equals C then
the specialization (¢, w1, - - -, Ta)—(, w1, - - -, W) over F is analytic.

Proof. We use induction on # to prove the existence of a fundamental sys-

tem of zeros (au, - - -, a,) of L(f, y) such that the field of constants of
F(f, cu, - - -, @,y belongs to B, the algebraic closure of B, and (¢, 71, - + -, )
—(f, a1, - - -, ) 1s an analytic specialization over §. For » =1 our assertion

is valid for by Theorem 3 there exists A\=8"2 ;>, g:8¢ such that (¢, m)—(%, \)
is a generic specialization over F. Since G contains the full triangular group
any constant multiple of X is a generic specialization of X over F(¢), so that
(t, m)— (I, D_iogiB?) is a generic specialization over § and (¢, m1)—(Z, g0)go 70
is an analytic specialization over §. Let #>1 and let our assertion be true for
lower values than n. Let Li(¢, m1, y) be the homogeneous linear differential
polynomial of order #—1 in y which has ((memi?), - - -, (w.m1!)) as a funda-
mental system of zeros; then Ly(¢, 71, y) =ao()my™ P+ - - - . Since ao(f) go=0
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and (¢, m)—(f, go) is an analytic specialization over ¥, by our induction
hypothesis there exists a fundamental system of zeros (us, - -, m.) of
L,(Z, go, ¥) such that

(t’ 1y (7"27"{_1),7 Tty (anl—l)l) - (t-r 8oy M2, * 0, M")
is an analytic specialization over ¥ and the field of constants of
€F<Zy gOy M2y, *c o, I‘n)

belongs to B. For the group of F(¢, m1, (mi)’, - - -, (wamrY)’) over F(t, m)
contains the full triangular group. Now the equation of lowest order that
mi! satisfies over

€F<tv Ty = ° y Wi, ("iwl_l),» Ty (""7"1_1),>
is ¥’ — (wwi!)’ =0. Hence the analytic specialization
(ty 1, (7r27rl_l),, Tty (1r,,1r1‘1)') - (t.r 8oy M2, * 0y, I»‘n)

over § can be successively extended to m;wi'—80; where 8, is a nonzero solution
of y'—ui=0 (s=2, - - -, n) such that the field of constants of F, go, 02, - - -,
6,) belongs to B. Let ay=go ai=gl; (=2, - - -, n) then (¢, m, - - -, W)
—(, ay, - - -, a,) is an analytic specialization over &. Also W(ay, - - - , &) #0;
for suppose there exist constants a; such that Zleaiai=0. Since a;#0
(1=7=n) at least two of the elements a; are not zero. Dividing through by
a; we get ai+ D1 ai(aiait) =0, so that D 1, as(asai) = D s ami=0 with
at least one of the constants a; different from zero, contradicting our induc-

tion assumption. Hence W(ey, - - -, @) 0 and our assertion is proved.
Now let (g1, - - -, 0,) be a fundamental system of zeros of L(f, y) such that
the field of constants of (i, a1, - - -, ¢,) is C. Then ;= Y 1., by;e; and we

may assume each b;,;&B (Corollary 2, Lemma 1). Let (ai;) = (b;;)~! then
a;= Y 1., a;0; with each a;;&€ B; there obviously exists a specialization, over
F(f), (a:;)—(a;;) with each @;EC such that determinant (&;)0. Let
wi= Y 7.1 dyo; then (¢, 7, - - -, m)—(@, wy, - - -, w,) is a specialization over
F, and the field of constants of F(, wi, - - -, w,) is C.

The examples below show that if the group of F(¢, w1, - - -, m.) over F(¢t)
does not contain the full triangular group there may not exist a specialization
@ymy, - - -, m)—@¢ W, - - -, w,) over Fsuch that (¢, wy, - - - ,w,)isa P.V.E.
of F(%).

ExaMPLE 1. Let § be the differential field of rational functions of x (x"'=1)
over the complex numbers. Let ¢ = (log x)~! then the differential equation of
lowest order that ¢ satisfies over § is xy’+y2=0. Now, {—0 is an analytic
specialization over &, for t—0+ D 1~ (—1)i(log x)i8#*! is a generic specializa-
tion over &, since D ;o (—log x) B+ =B[1+ (log x)B]~!, which is not alge-
braic over &, is a solution of xy’'4y%=0. Let L(¢, y) =xy’’+y’; then log x is a
zero of L(¢, ¥) and the specialization {—0 can not be extended to a specializa-
tion of (¢, log x) over &.
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ExAMPLE 2. Let § be the field of complex numbers, let ¢t =¢%, {=0 and let
L(t, y)=y"" — [(142"/2)e=+1]y’ +2' /22y, L(¢, y) has a fundamental system
of zeros (e, ¢2""). As we have shown above in Example 2 of Theorem 2,
the specialization t—f over § is analytic and the algebraic matric group of
F (e, e, ™) over F(t) is the full diagonal group. Now, L(f, y) =y'' —y’
which has a fundamental system of zeros (1, e*); but the specialization t—0
has only one possible extension (¢, e, 32”2”)———»(0, a1, ¢2) where ¢1, ¢; are con-
stants which do not give a fundamental system of zeros of L(Z, ).

LEMMA 3. Let t=(t, - - -, t,) be differential indeterminates over § and let w
be a nonzero solution of ao(t)y’ +ai1(t)y =0 (ac(), al(t)ES’{t} without common
divisors) such that $(¢, 7) is a P.V.E. of $(t). Then any specialization t—1 such
that ao(f) %0 can be extended to a specialization (¢, m)—(f, %) over § such that
#7#0 and §(f, #) is a P.V.E. of F().

Proof. If 7 is not algebraic over F(¢) then any nonzero solution # of
ao(f)y’ —a:(f)y =0 such that §(f, #) is a P.V.E. of §(f) will do. Suppose = is
algebraic over F(t); then since 7 satisfies a h.l.d. equation of order 1 over
F(t) any automorphism of F(t, w) over F(t) takes 7 into ¢ ¢&C. Also, the
group of automorphisms of F(¢, m) over F(¢) is finite of order & so that ckF=1
and

T = P(1)/Q()
(P, Q(t)ES{t} without common divisors; k an integer) and
P(1)Q(t) — P(HQ®)’
kP()Q()
so that a,(QP’ —PQ’) =ka,PQ. Assume P(i) =0 and let R be an irreducible

factor of P such that R(¢) =0. Let P=R*S (n>0, S not divisible by R). Then
R does not divide aq or Q so that R* divides

QP' — PQ' = Q(nR*'R'S + R"S’) — R"SQ".

Hence R divides QR’S; it follows that R divides R’ which is impossible
since R’ is of the same degree as R but is of higher order. Hence P(f) #0,
and for the same reason Q(f) #0 so that any solution # of Q(#)y*—P(#)=0
has the property that (¢, m)—(f, #) is a specialization over J.

ai(t)/ao(t) =

THEOREM 5. Let t=(t,, - - -, t,) be differential indeterminates over , let
L{t, v)=at)y™+ - - - +a.()yEF{t, v} and let (my, - - -, m) be a funda-
mental system of zeros of L(¢, ) such that §(t, m, - - -, wa) is @ P.V.E. of

F(t) with algebraic matric group G containing the unimodular group. Then any
specialization t—i over § such that a,(f) #0 can be extended to a specialization
(t,m, - - -, wa)— @, 71, - - -, 7a) over § such that ¢, 7, - - -, #.)1sa P.V.E.
of 5(&) and the Wronskian W(#&y, - - -, #a) #0.
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Proof. If the dimension of G is #? then any fundamental system of zeros
(#1, + - -, ®a) of L({, ¥) such that (&, #1, - - -, #.) is a P.V.E. of §{f) will do.
Let the dimension of G be n?—1. By Lemma 3 the specialization t—f over &
can be extended to (¢, W)— (¢, W) where W= W(m, - - -, ), W40 and the
field of constants of §(, W) is C; for W is a zero of a¢(t)y’ —ai(f)y. Now, the
group of F(t, my, - + -, m.) over F{t, W) is the unimodular group of dimension
n?—1 which equals degree of transcendence of F(¢, m, - - -, m.) over F{t, W).
Hence the differential equation of lowest order that w; satisfies over
g, W, m, - -+, mia), =1, -+, n—1),is L(t, y)=0. For otherwise the
sum of the orders would be' less than #2—1. Since m, satisfies an equation of
order n—1, i.e. W(my, + -+, Tno1, ¥)=W(m, - - -, ). Therefore any n—1
linearly independent zeros (#1, - + -, #a.—1) of L(¢, ¥), such that the field of
constants of F(&, #1, - - -, #a—1) is C, will do. The differential equation of low-
est order that m, satisfies over (¢, W, my, -+ +, moq) is W(my, - - -, Tne1, ¥)
—W=0 which is linear and of order n—1. The coefficient of y©=V is
W(my, -+, Ta—1). Since W(#y, + -+, #n-1)7#0 any nonzero solution #, of
W(#1, « -+, Fa-1, ¥) —W =0 such that §{f, #, - - -, #.) is a P.V.E. of (i)
has the property that (¢, W, m, - - -, m,)—(@, W, #1, - - -, &) is a specializa-
tion over &.

II. GENERIC EQUATION WITH GROUP G

1. DEFINITION. Let G be an # Xn algebraic matric group and let L(¢, y)
=Qolt, - -+, t)yW4 - F0ulty, - - -, tr)yEC{tl, cee, by y}' Let
(my, -+ -, m) be a fundamental system of zeros of L(¢, y) such that
Cltr, -+ -y by, - -+, myisa PV.E. of C{t, - - -, t,) with group G. Then
L(t, y) =0 will be called a “generic equation with group G” if:

(1) t, + -+, t, are differentially algebraically independent over C, and
Clty, - - -, t)CC(my, - - =, Ta).

(2) For every specialization (#1, « -+, &, w1, -+, w)—, - -, b,
w1, + + +, ) over C such that C{&, - - -, &, ®1, - -, @) is a P.V.E. of
C(h, - - -, ;) and field of constants of C{#;, - - -, #,) is C, the algebraic matric
group H of this extension corresponding to the fundamental system of zeros
(#1, - - -, 7)) of L(Z, y) is a subgroup of G.

) If (w1, -+, wa) is a fundamental system of zeros of L(y)=y®
+ay*v4 ... +a,.y€i¥{ y} where §F is any differential field with field of
constants C, and F(wy, -+ -, w,) is a P.V.E. of § with algebraic matric group
HCGQG, then there exists a specialization (¢4, - -+, t)—(, - - -, &) over &
with Z;E7 such that Q¢(f, - - -, #,) %0 and

a; = Qi(t-lr T t-r)QO_l(t-lv R ir)*
2. Necessary and sufficient conditions.

LeMMA 1. Let G be an nXn algebraic matric group and let L(t, )
=Qo(ty, - - -ty ™+ - FQully, - - t)YEC{t, - - - b, ) bea “generic
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equation with group G.” Then r=n.

Proof. By (1) C{ts, - - -, ;) CC{my, - - -, ma) so that » <n. Suppose r <.
Let y1, - - -, ¥. be n differential indeterminates over C. Then C{yy, - * +, )
isa P.V.E. of C(Pi(y1, - =+, yn), -+ =, Pa(3, - - -, ¥»)) where

Wiys, ==+ ) yn)

Pi(yl)"'yyn)=———*~'_' (i=1""yn),
IV()(yl’ ) yn)
?’l DY yn
&("—i-l) y(n—i—l)
. 1 n
(A) Wi= (=1 " ity (n—i+1) |-
1 n
T (n) T (n)
N Yn
Let G be the differential field of invariants of G in C{y, - -+ -, ¥.). Then

Cy, * + +, ¥y is a P.V.E. of ¢ with group G, for C{(Py, - - -, P,)CG. Since
the degree of differential transcendency of C{Pi, - - -, P,) over C is n there
can not exist any specialization (¢, - * +, t)—(f, + + -, ) over C such that
P, = Qi(fly cee, fr)
Qo(tlr ) tr)
violating (3). Hence r =n.
This lemma shows that if an #Xn algebraic matric group G has a
“generic equation with group G” then it is necessary that the differential

field of invariants of G in C(yi, - - -, y,.) be purely differentially transcen-
dental over C.

LeMMA 2. Let G be an n Xn algebraic matric group over C; let

C<ll(yly Tty y")r R t"(ylr ft yn)>

be the field of invariants of G in C(yy, - - -, Ya), Where y1, - - -, ¥, are n differ-
ential indeterminates over C. Let

fi(yl; ) yn)

&(ys -y )

Qilty, -+, tn)

Qolts, - - -, L)

where P;(y1, - * + , ¥a) 15 given by (A). Let

R(fx."',fn,gl,"',gn)= R¥(y1, - -+ » ¥a)
) F2ACTIRRRIES IT gy, - -+, 9w)

1=l

tt‘(yly"'yyn)': fi,giec{yly"°yyn} (i::ly"')n)y

Pys, vy ) =

Qo(tl» Ty tn) =
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Let Wo(ys, -~y y)E{R* oy, -+, y) [[migin, - -1 92)} and let
F(wy, * + -, wa) be a P.V.E. of § with group HCG where (w1, -+ -, w,) 15 @
fundamental system of zeros of

L(y) = y™ + a1y + - - - + ¢y € F{»}.

Then there exists a specialization (4, - - -, t.)—(h, - - -, I,) over C with
1. EF such that

— Qi(t-l’ Ty tn) .
QO(t.l) Y tn)

a;
Proof. Since

Wo(wlﬁ Tty wn) = O) R*(wl’ ) wn) H gi(wl: ) wn) # 0.
$=al

Hence
Qi(tl(wh Sty wn)y MY tn(""b R wn)
ti(wlo Sty wn),
Qo(tl(wh R wn): Tty tn(wlr Y wﬂ)
are defined. Furthermore ¢;(w, - - +, w,) are left invariant by H since HCG,
so that ti(wy, - - -, w,) EF. Also, we have
P( ) Q‘(tl(“’ly Tty wﬂ)! Tty tﬂ(wly tT “’n))
a; = Piwy, -+, wp) = .
' ‘, T Qo(t1(0’1, Tty wn): Tty tn(wh Tty wn))
Hence the specialization (&, « - -, t,) =@, + » *, ) =((wy, * + -, @), * -+,
ta(wy, - - -, w,)) over C gives us
Qt'(ilr R iﬂ)
4 = ——————
Qo(th tt tn)
with 5;65.

We are going to show how to construct a “generic equation with group
G” for the following groups G:

(1) The full linear group;

(2) the unimodular group;

(3) the reducible group consisting of all nonsingular matrices (as;) %, j
=1, - -+, n, such that ¢ryt,m=0 (B=1, - .,s; m=1,---,r)r, s being
fixed with r4s=n;

(4) the orthogonal group;

(5) the symplectic group.

Our procedure will be as follows. For the differential field C(yy, - - -, ¥a),
where y,, + + -, y. are differential indeterminates over C, we shall find »n
differentially algebraically independent generators 4, - - -, t, over C of the
differential field of invariants of G in C(y;, - * -, ¥,). We shall then show how
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.

to obtain n+1 differential polynomials Qo(ts, = * *, ts), * = =, Qu(t, * * +, ta)
such that

_Qi(lly"'ytn) . L.
Pi(}’l, N _Qo(4_t1, R (i=1, ) 1)

where Pi(y1, - -+, ¥a) Is given by (A). Then
L(t, ) = Qolty, = =+ t)y™ + - - + Oty -+ )y = 0

will be our “generic equation with group G.”
3. The full linear group. For the full linear group we let t;=Pi(y1,- - - , ¥a)
and

L(t, y) = y(”) + Pl(yl, tt yn)y("_l) + A + Pn(yly ) yn)y.

Conditions (1), (2) and (3) are obviously satisfied.

4. The unimodular group. Let G be the unimodular group. Then the
differential subfield § of C(yi, * - -, ¥.) which is left invariant by G is
Clt, - - -, ta)ywhere hi=Wo(y1, -+« ,ya) and t;=Wilyy, -+« ,90) =2, - - -,
n), Wi(y1, + + -, ¥a) being given by (A). For, Wi(y, - - -, y.) is left invariant

by G and is not left invariant by any other nonsingular linear transformation.
Also,

W'.(yl, cee, yn)
Wolyr, =+, ¥n)
Wiy, -, 9n)
Woly, -+ 4 ¥n)

Hence C(Py, ---, P.)CC{t, - -, t.)CC{y, -+, ¥ay. Therefore G
=C{t, + + -, ta). Now, let

Ps’()’l"",)’n)': t,’ti—l (i=27"'vn)’

H

Pl(yly"'yyn)r‘

n) 1 (n—1) id (n—1)
L, y) =ty — 0y + oty

=2
and let

(tlr"'vtmylr".)yn)—)(zly'°'vfm5,ly"'!5’")
be a specialization over C such that C{#;, - - -, #s, 51, - - -, ¥n) isa P.V.E. of
C{t, - - - ,1,). Let Hbe the algebraic matricgroup of C{f, + - * ,Zu, 51, * = = , Fn)
over C{#, - - -, t.) and let 0 =(a;;) EH. Then §y =0k =det. (a:;)h, and since

Lh=Wy(51, + - -, §a) %0, det (a;;) =1 and H is a subgroup of the unimodular
group. Furthermore since L(¢, y) satisfies the conditions of Lemma 2 L(¢, y)
=0 is a “generic equation with group G.”

5. The reducible group.

THEOREM 1. Let 7, s be natural numbers such that r+s=n, and let G be the
reducible group consisting of all nonsingular matrices (ai;) (3, j=1,---, n)
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such that @rixm=0 (k=1, - - -, s;m=1, - - -, r). Then the differential field G
of invariants of G in C{yi, + - -, ¥.) is purely differentially transcendental over
C,and §=Clt, - - -, t,) where

— Wi(ylr""yf)
Wolys, -+ 90
Wi(ylr Tty yn)

i = ——— (t=1,---,9),
* Wo(yx,---,yn)

ti (‘i=1,"',f)’

(W is defined by (A)).

Proof. C{t, - - -, t.) is, obviously, left invariant by G. Also, any non-
singular matrix ¢ €G will not leave any of the ¢; (=1, - - -, 7) invariant. For,
the t; (=1, - - -, r) involve only ¥, - - -, ¥, and if 0 &G ot; must contain at
least one y; (j#1, - - -, 7). Since y1, + - +, ¥ are differential indeterminates
over C they can not satisfy the relation ¢t;=¢; (¢=1, - - -, 7).

It remains to show that C(Py, - - -, P.)CC{, + * *+, t.). Since G is re-
ducible the differential polynomial L(y) =y™4Py(yy, = =+, ¥2)y@ V4 - - -
+P.(y1, - - -, yn)y is linearly reducible over ¢ (Kolchin [2]) and L(y)
=L,(Ly(y)) where Ly(y) has y1, - - -, 9, as a fundamental system of zeros and
the group of C(y;, - - -, %) over G is the full linear group. Hence L(y)
—Li(y@+hy™D+ - - - +1(y) where Li(y) €g{y}. Let Li(y) =y @+ Ry
+ .- +R,y€9{y} comparing coefficients in L(y) = Li(Ls(y)), we get

t1+1= P1= ll+Rly
beye = Pa = st{ + & 4+ Rit1 + R,

i1 —k s—k ki
tr+¢=Ps=2Rk2( >t§~k”+R.- (i=1,-++,9.

k= 1 \i— k—]

(232

are the binomial coefficients and Ry=1.

where

We see that the R; (=1, - - -, 5) are differential polynomialsin, - - -, ¢,
with coefficients in C. Also, Py, - - -, P, are differential polynomials in
Ry, -+, Ry ti, -+, t, so that C(Py, - -+, P,)CC{t, -+, t.). Hence
9=C<tl, oty t,,).

Set L(t, y) = L1(¢, Lo(t, v)) where
Loty 3) = 30 + iy™D + - - - +lhy

and
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Lit, y) = 9 4+ Ry(ty, - -+, t)y@ D 4 <o« 4 Ry(ty, - -+, t)y
then
Lit,y) = ™ 4+ 0s(ty, - =+ 4 by D 4+« 4 Onltny - - -, L)y
where
o.€C, -t (i=1,--,n).
Let
(ty by s ) = (B e oo By F1y vy F)

be any specialization over C such that (§1, - - -, §.) is a fundamental system of
zerosof L({,y)and C{ty, « - - Euy 1, -+, Fn)isaP.V.E.of C{f, - - - ,£,). Since
L(t, y)=Li(f, L,(i, )), any element (a;;) of the group H of C(tl, IR
$1, * + +, Py over C{h, -+ -, I,) must take the subspace generated by
J1, + + +, Fr into itself so that ar1x,,=0 (B, m=1, + - - | 5) so that H is a sub-
group of G. Furthermore since 7 <z every zero of Wo(yx, - -+, %, is a zero of
Wo(y1, + + -, ¥n), so that every zero of Wy(yy, - - -, ¥2) Wolyy, - - -, ¥,) is a
zero of Wo(yi, - -+, ¥a). Therefore Wolys, - - -, ¥)E{Wolyy, ', yn)
Wiy, - -+, 9)} (Ritt [3, p. 27]). Hence the conditions of Lemma 2 are
satisfied and L(¢, y) =0 is a “generic equation with group G.”

ExamprLE 1. Let =4 and let G be the group of all nonsingular matrices
(a;j) Wlth 031=(132=041=a42=0 then

L(t, y) = y(4) + l3y(3) + t4y(2)
2
4 [6 4 ot 4t — 1) = 30t] — 2+ Bl + 13+ 20 ]y
2 2
+ [+ ta(t — tits) + s — titd — ta + Lls — 20{ 1] y.

Of particular interest is a generic equation for the full triangular group. By
iterating the result for the reducible group we find that the differential field

G of invariants in C(y1, - - -, ya) of the full triangular group is C{t,, - - -, t.)
where
WI y "y Y
t1,=__ O(yl y) (1,=1, ,n)
Wo(yl, ) yi)
For n=2,
g 2
L(t,y) = 9" + tay’ — (s + 1 + ) y.
For n=3,

2 2
L(t, y) = " 4+ t3y" + (bta — tabs — to — t{ — 11)y'
2 2 2
+ [taltats — 1 — t]) — ity + titd + tita — t{" — 20t{ y.
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6. The orthogonal and proper orthogonal group.

THEOREM 2. Let G be the orthogonal group of order n. Then the differential
field G of invariants of G in C{yy, - - -, ¥a) is purely differentially transcendental
over C and G=C(to, - - * , tn1) where

2(("‘)2 (m=0,1,2,)
k=1
Proof. We show that
[i/2] Y
(1) 23y 2 S g OSm<w,1Zi<w)

k=1 7=0

where [i/2] denotes the greatest integer <4/2, and

= (-0 (" ) (1=i<=0z]s [i/2).
t—7 J

Indeed, since D g., (3i™)2=t, we have 2D ., y™y™ D=4 so that (1)

holds for 0 <m < »,3=1. Differentiating this equation we obtain 2 >_ymym+2

=ty —2pmy1 SO that (1) also holds for 2=2. Now let £>2 and suppose that

(1) holds for lowest values of ¢ and for all m; differentiating (1) with ¢ replaced

by 7—1 we find

2L (m) (md)
22

e/ (i-27) (m+1)  (mti—1)
@it ibmyi — 2 Z Ve Yk

k=1 7=0 k=1
[G=1) /2] eziy LG22 a2
= a;, ,tm.'., - ai—z,htm+1+h
=0 h=0
(=1 /2] irpy L2 it
= E @iy, itmti — Z @iz, j—1bmt;
=0 =1

P (COE ith)
= Girotm + 2, (@ic1,i — Gig,i1)tmyi

i=1

(e A R
—\l S|~ Qi—2,(i/2]—1m+ [
2 2 2, [1/2]-1m+ [i/2]

[Gi—=1)/2] ; ;o 1
) (i-21) 4 t
Goobm + 2o Gifbm; + (l:?] - [ 3 ]) @i, G2} bmt 5/2)
i=1

L P
= Qijlmyj

=0
so that (1) holds for all 21 and all m=0. This shows that Y r., yym+?
EC{to, t, -, t,._l} whenever

It
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2m + 1 < 2n — 2 (i even), 2m + 1 < 2n — 1 (1 odd).
In particular, setting 7=# —m, we find that

> oy EC oty - ey b O=ms=n—1),
k=1

forif m<n—1 then 2m+n—m <2n—2 and if m =n —1 then n —m is odd and
2m+n—m=2n—1. But

o) = ()
Ye = — ZPT(yl:' t yyn)yk
r=1
so that
= 2N (m) ()
2Py, v Xk oy EC{ by ) (0SmEn— 1),
r=1 k=1
This gives rise to # linear equations in Py, - - -, P, with coefficients in
C{to, b, - -, t,._l} : moreover
N O ) 2
(2) det(zyk Vi >= Wﬂ(ylv'.')yn)¢0‘
k=1
Hence C(Pi(y1, -+, %a), =+ =y Palyr, - -+, y))CClt, - - -, tu.1). Since
t; (1=0,1, - - -, m—1) is left invariant by the orthogonal group and by no
other nonsingular linear transformation, G=C(to, t1, - * * , ta1).
COROLLARY. Let G be the proper orthogonal group of order n. Then the differ-
ential field G of invariants of G in C{y1, - - -, ya) is purely differentially trans-
cendental over C.
Proof. Obviously G=C(to, - - -, taet, Woly1, - -, ¥a)). From (2) if we ex-
press | (2_r-; ¥y )| as a differential polynomial in to, - - -, t,_y, the

differential polynomial will contain ¢,—; only when m=#—1 and r=1. Hence
we may solve (2) for ¢,—, so that

g = C(to, tl, cty, tn—2y Wo(yh Tty yﬂ)>
7. The symplectic group.

THEOREM 3. Let n be an even integer >0 and let G be the symplectic group of
order n (i.e. the n Xn algebraic matric group which leaves invariant the bilinear
form Y "2 (ugs—svoe —pissves—)). Then the differential field G of invariants in
Cy, = -+, ya) of G is purely differentially transcendental over C and G
=C(to, t1, - - -, ta_1) where

n/2
tn= 2 (acayne =y yn)  (m=10,1,2,---).

8m=1
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Proof. Define

n/2 .
(@) (4R G+E) ()
tie = 2 (Yoom1Y2e  — Y2eo1 Y2s)

s=1

then
b= b, ti = biyrh1 + bikpr.

We shall prove that

[(k+1) /2] .
(k—2j+1)
3) te = 2, Gritivia
d=1

where

cn(2)

351

(3) certainly holds for all =0, k=1, 2. Assume inductively that (3) holds

for all =0 and 1 =k =r. Now,

[(r+1) /2] [r/2]

' (r 27+2) r—21)
bijvp1 = bir — biz1r1 = Z Qritiviy  — Z [
i=1 i=1

[(~+1)/2] ( )
(r) r—2j+2
tt + Z (ar:’ ar—1, 1—1) -1
=2

r [ 4 + 1 r—2[r
- <[7] +1-— [ 5 :l) ar—l.[r/2]t§+[:/2{2])

2) /2
[(r+2) /21 (2]
= D Gunititia
i=1

which proves (3) for k=741, it therefore holds for all 1 k< «. It follows
from (3) that ta&C(to, 41, - - -, tam1) whenever 26+k=<2n—1. In particular

tim—i€&C(to, -+ + , tam) 6=0,1, - - -, m—1). Since

(n) .
= — Z Pr(yl, sy, yn)y("—') (] = 1’ ..
r==1
we have
n n/2 .
%) (n—r) (45) (n—r)
lLin—s = — Z P, E (¥25—1¥2: ~ — Vas Vos—1 )
r=1 8=1

= - Z Prti,n—r—i E C<t0, tl’ DY tﬂ—l)

r=1

"n’)

where #;nk—i= —tn—k,i—n—r) if #—Ek <2, we thus obtain a system of # linear
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equations in Py, - - -, P, with coefficients EC(to, t1, + + -, ta1). If we define
integers oy, by the equation

n/2 ’ ’ ’

Z (yZS—lst - yhyh—l) = Z Ay YuYy

8=l

then the det of the linear system

) (n—r) ) (n—r) (1) (n—r)
= det( Z y2x—ly2ns - yZ‘: yZ:—l) = det( Z Uy Yu Yv )

woy

= det (v, det (o) det (35 ") = det (o) Wo(y1, - - -, ).

Since det (a,,) =1 we have

n/2 . .
G (-n &) (n—r) 2
(4) det ( Z Yaes—1Y2s — Yas y23—1> = Wo(yly Tty yn) #= 0.
8=1
It follows that the linear system may be solved for Py, - - -, P,, so that
C{(Py, - -+, P.)CClto, t, + + * , tam1). Since C{to, t1, - - -, tn) is left invariant
by G and by no other nonsingular linear transformation, C(to, t, - -+ -, tn1)
=q.
8. Generic equations for the orthogonal and the symplectic group.
LEMMA 3. Let §{w;, - - -, w,) be any differential field with field of constants C.
Let (w1, + - -, w,) be a solution of either one of the following sets of equations:
(B) Za"jy:“)y;”)=0 (i,j=1,"',n,p=0,1,--~,n—1)
¥

ai; = a;; € C rank (a;;) > 0.

(C) st’:’)’:“)y;‘Hl):O (i,j=1,'--,n,y=0,1,--~,n—l)

(1%

bij= — b;; € C rank (b;;) > 0.

Then wy, - - -, w, are linearly dependent.

Proof. Assume the theorem to be false then wy, - - -, w, are linearly in-
dependent. Let rank of (@), (b:;) be »>0; then there exists a nonsingular
linear transformation S such that Swy=my and (m, - - -, m,) is a solution of

Z(yli“))2=0 (/-‘=0v1y"'1v_1)if(wly"'ywn)
k=1

is a solution of (B). Similarly, there exists S such that Swy=m; and
(m, + + -, m) is a solution of
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v[2
) 41 ) +1)
3 (yataye ) = g yas) =0 w=0,1,---,v—1)

8=1

if (w1, - -+, wa) is a solution of (C). Now, from (1) and (2) we see that

Wo(y1, - - -, 9,) belongs to the ideal { D 5.1 32, Dopci ¥ -+, Dobea (:)’g-l)’}.
Similarly, from (3) and (4) we see that Wy(y,, - - -, ¥,) belongs to the ideal

v/2 v/2

' -1 ® -1 @

{ Z (yzs—lyzl. - yz.yzs_l), Tty Z (yz.s—x Y2s — Yas yZa—l)} .
=1 =1

In either case Wy(m, - -+, m,)=0 contradicting our assumption that

wy, * + -, w, are linearly independent. Hence wy, - - -, w, are linearly de-

pendent.

THEOREM 4. Let G be either the orthogonal group of order n over C, or else
the symplectic group of even order n over C. Express the differential polynomsials
Pi(y1, * * , Ya) tn the form

Qi(to’, by, - - ) tn—l)

Pi(}’;"',yn)= (1:=11"')”)’
! QD(tO, tly R ytn—l)

Qi(tO, tl) tt t’l—l) E C{to, tl: Ty ln—l} (1' = 07 1’ tt n)

where
n
()2
ti= 2 ()
k=1
or
L2y G+ () i+
ti = E (y2c—-1y2c = Y2 Y251 )

s=1
according as G is orthogonal or symplectic. Then
L(t, y) = Qo(to, s, tn—x)y‘”) + Ql(lo, e, ln_x)y(”‘” + -+ Q"y =0
is a “generic equation with group G.”

Proof. We shall give the proof for the orthogonal case. The proof for the
symplectic case is entirely similar.

Let
(tO) tly tt tn—l; Vi, * )’n) - (t-O, ily tt t-n—ly Wiy, wn)
be a specialization over C such that (w, - * + , w,) is a fundamental system of
zeros of L(#,y) and C{fo, &y, - - * , fa—r, 1, - - - ,wn)isa P.V.E. of C{fo, &1, - - -,

t,—1) with group H. Let ¢ ©€H; then

n

(). 2 - - %) (9
Z (wk ) = t,' = at; = Z a,,.,,w,,: w,,‘
k=1 m,p
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where
Ump = apm & C,
so that
2 mpon 0y = 2 (@) = X bngrn 0y = 0
m,p m,p
where
Cmp if m # p,
b = {a,,,p——l if m= p.
Since bmp=>0pm, by Lemma 3 if rank of (bn,) is not zero, wy, - - -, w, are

linearly dependent contrary to our hypothesis. Hence rank of (b,.,) is zero and
{0 if m # p,
Amp = .
1ifm=2p

so that o belongs to the orthogonal group. Hence HCG.
It follows from (1) and (2) that the ¢; (=0, 1, - - -, z—1) are differential
polynomials in yy, - - -, v, and that

2
QO(tOy tlr Tty tn—l) = (“2)"W0()’1, Tty yn)
so that the conditions of Lemma 2 are satisfied and therefore
L(t, y) = Qo(to, tl, ce, tn_l)y(n) + e+ Qn(lo, cee, ;n_l)y =0

is a “generic equation with group G.”
ExaMpPLE 1. Let G be the 2 X2 orthogonal group then

(142 — 4tal)y” + [20tah)’ — totd’ 1y + Q@U'ts — thtl — 48y = 0

is a “generic equation with group G.”
ExaMPLE 2. Let G be the 3 X3 orthogonal group then

(5) L(t, ) = Qoy"" + Q19" + Q' + Qsy = 0
where
Qo = 2{6(13® — atety) — 1{ [t (18" — 20) — 2tat! | + (88" — 202},
01 = Bt! — ") 208" — 20) — {18 )+ (" — 20a) [td (8" — 282) — 2tot{ ]
— 14 (192 — 4toty),
(6) Qo= (8" — 20)[(2ta — t{")(t" — 202) — t{ (Btf — 1) + 1317 ]
+ 20 [(3t] — 1" — (2 — t{") 2] — 2Uet{ ],
Qs = (Btf — 1§ )2 — 4ut) + (' — 2)[(t" — 2t)t] — 2047 ]
+ 248 ta(2t — t{") + tJt{ ts

Il
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is a “generic equation with group G.”

Let G be the 3X3 proper orthogonal group then by the corollary of
Theorem 2 the differential subficld of C(y1, s, ¥3) which is left invariant by
G is C(to, tr, Wo(y1, - - -, ¥»)) where &, £, is the same as for the orthogonal
case. We may solve for ¢, from (6) recalling that Qo= —8W3(y1, ¥2, ys) we ob-
tain
; —AWo + t [t (10" — 2t)) — 2tet] | — t,(88" — 2¢,)2
) = 1 — 4oty

if we substitute this expression for #; in Qs, Qs, (01=8W,W{) we obtain

’

W
)] L(t, y) = 9" — “‘VEO‘ ¥ 4 Ri(to, ty, Wo)y" 4 Ra(to, t1, Wo)y
0

where Ry, R.EC{to, 1, Wy). The following example shows that (8) is nof a
“generic equation with group G” where G is the proper orthogonal group.
ExaMmpLE 3. Let §=C{x) where C is the complex numbers and x’=1. Let

L(y) — ylll+2xyl+y

and let (%, t1, t2)—(0, 1, 2x) be the specialization over C. Then from (6) we
haveQo=8,0,=0,0,=16x,0; =8sothat (5) becomes L(Z,y) =8(y""' +2xy'+y).
It can be shown that this specialization can be extended to a specialization
(to, t, to, ¥1, ¥2, ¥3)—(0, 1, 2x, w1, w, w3) over § where F{w;, wy, w3) is a P.V.E.
of §. Hence the algebraic matric group H of F{wi, w, ws) over §F must be a
subgroup of the orthogonal group. Since the coefficient of 3’/ in L(y) is 0,
H is a subgroup of the unimodular group, so that H is a subgroup of the proper
orthogonal group. We are going to show that H = proper orthogonal group.
For, let H, be the component of the identity of H and let dimension of
H,=2 then H, is solvable (for the dimension of the Lie algebra corresponding
to H, would have dimension =2 and is therefore solvable). Then there exists
m a zero of L(y) such that wiz~! is algebraic over &, but the coefficients of
L(y) are regular in the whole complex plane so that 7’7~! can not have any
branch points and must be a rational function of x. Now, w’'7—! is a zero of

F() =2" 4+ 325" + 22 + 22z + 1

if 7’71 has a pole of order r at a place ¢ » then =1 (for 23, 22/, 2/’ have
poles of order 37, 2r+1, 742 respectively; equating 3r =2r+1 we get r=1).
Let u=x"! then

F(2) = w5% — 3ud2z + 2ubs + w3 + 22 4 u

where %, 2 denotes differentiation with respect to %. Let # be the order of the
pole of 7'7=! at u =0 then u(r'7~1)? has a pole of order 3 —1 which is greater
than any other term in F(z). Hence 7'm—! does not have a pole at x =« so
that
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'l = ao + E a,-(x - C.’)_l @;iCsi E C.
=1
Solving for m we get w=de%* [ [}., (x —c;)%. Since 7 is regular in the whole
plane the a; must be positive integers, so that = =e%*P(x), P(x) a polynomial.
Substituting 7 in L(y) we find that P(x) must be a zero of

K(z) = 3" + 3a02” + (Saz + 2x)2" + (02 + 2apx + 1)z.

If n is the degree of P(x) then 2a,xz will have degree n+1 and all the
other terms in K(2z) have lower degree. Hence ap=0 and 7 =P(x). Let P(x)
= Z:‘,O cixt, then we must have ¢, x4 2xc,x» =0 so that ¢,=0. Hence H,
is not solvable and dimension of H>2. But H is a subgroup of the proper
orthogonal group which has dimension 3 and is connected. Hence H = proper
orthogonal group.

Now, the specialization #,—0 makes the denominator in (7) vanish, and
it is easily checked that the denominators of Ry(to, £, Wy) and Rs(te, £, W)
in (8) also vanish. Hence there does not exist a specialization (¢, &, Wo, y1,
V2, ¥a)— (b0, b1, W, w1, we, ws) over § such that L(, y) =L(y), so that L(¢, y) of
(8) is not a “generic equation with group G.”

REFERENCES

1. E. R. Kolchin, Existence theorems connected with the Picard- Vessiot theory of homogeneous
linear ordinary differential equations, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 927-932.

2. , Algebraic matric groups and the Picard- Vessiot theory of homogeneous linear ordi-
nary differential equations, Ann. of Math. vol. 49 (1948) pp. 1-42.

3. J. F. Ritt, Differential algebra, New York, Amer. Math. Soc. Colloquium Publications,
vol. 33, 1950.

4. E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. vol. 78 pp. 221-229.

5. B. L. van der Waerden, Moderne Algebra, vol. 1, Berlin, Julius Springer, 1940.

CoLuMBIA UNIVERSITY,
NEw York, N. Y.



