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Introduction. Let g be a field and let /, / be elements of some extension

field of g. One says that t—rt is a specialization over g if for every polynomial

F(x)EQ[x] such that P(/)=0 we have F(i)=0. Let F(t, x)=a0(t)x"+ ■ ■ ■

+an(t)EQ[t, x] be an irreducible polynomial in x over g(/) and let /—>/ be a

specialization over g such that ao(t)d(i)^0, where d(t) is the discriminant of

F, then the specialization /—>/ over g can be extended to a specialization

(/, xx, ■ ■ ■ , x„)-h>(/~, xx, ■ ■ ■ , xn) over g where (xlt • • ■ , x„), (xx, ■ ■ ■ , xn) are

the roots of F(t, x), F(i, x) respectively. Furthermore, the group H of auto-

morphisms of g(/, xx, ■ ■ ■ , xn) over Q(t), considered as a permutation group

on 1, 2, • ■ • , w, is a subgroup of the group G of automorphisms of

Q(t, xx, ■ ■ • , xn) over g(/), also considered as a permutation group on

1, 2, • • • , n (van der Waerden [5]).

The purpose of part I of this paper is to obtain analogous results for homo-

geneous linear ordinary differential polynomials.

Let EF be an ordinary differential field of characteristic zero (i.e., a field of

characteristic zero with a given derivation) whose field of constants C is alge-

braically closed. Let h, • • • , tr, h, ■ ■ ■ , tT be elements of some differential

field extension of EF; then (tx, ■ ■ ■ , tr)-^(tx, ■ • • , tr) is a specialization over

EF if for any differential polynomial F(ylt ■ ■ ■ , yi)E^{yu • • • , yr} such that

P(h, ■ • • , /r)=0 we have F(h, ■ • • , tr)=0. The specialization (h, ■ • • , ti)

—>(ii, • ■ ■ , tr) over SF is generic if (h, ■ ■ ■ , tr)—>-(/i, ■ ■ ■ , tr) is also a special-

ization over 5\ If g is a differential field extension of EF and fi is a constant

transcendental over g we may form the differential field Q((fi)) of all formal

power series in fi with coefficients in Q and only a finite number of terms with

negative exponents. Let/=/o+ X^i/>!^'£9((/3)) and let/be a zero of F(x)

E${x}; then P(/0)=0, because F(f0) is the term of F(f) of degree 0 in fi,

so that /—>/o is a specialization over J. We call a specialization (/i, • • • , tr)

~^(h, ■ ■ ■ , tr) over SF analytic if there exist r elements tt+ ^-i/«vi3)Gg((|8))

(i = l, • ■ ■ , r), where g is some differential field extension of SF, such that

(h, ■ • ■ , ti)—*(h+ Hy/iyi3', • • • , tr+ ^Hfrjfi') is a generic specialization over

SF.

Corollary 2 of Lemma 2 shows that if / is not a singular solution of F(y)

= 0, where F(y) is the irreducible differential polynomial in SF{yj of lowest

order vanishing at /, then the specialization /—>/ over EF is analytic.

LetP(/,y)=a0(/)y<")+ • ■ ■ +a„(/)y£EF{/,y}, where/denotes (/i, • • • ,/r),

let t —> t be an analytic specialization over EF such that a0(i) ^ 0 and let
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(Xi, • • • , X„) be a fundamental set of zeros of L(t, y); then Theorem 1 states

that there exists a fundamental system of zeros (coi, • • • , w„) of L(t, y) such

that (t, «i, • • • , w„)—>(J, Xi, ■ • • , X„) is an analytic specialization over JF.

If g is a differential field with an algebraically closed field of constants

D then g{o>i, ■ • • , «„) is called a Picard-Vessiot extension (hereafter denoted

by P. V.E.) of g if the field of constants of g(wi, • • • , co„) is D and (coi, ■ ■ • , «„)

is a fundamental system of zeros of a homogeneous linear differential poly-

nomial of order n (Kolchin [2]). Note that Theorem 1 does not say anything

about the field of constants of 5(t, coi, • ■ ■ , a>„). In fact, as we shall show by

examples, 3(t, wi, • • • , «„) may not be a P.V.E. of *5(t) even when the field

of constants of \J(t) is algebraically closed.

Let g be a differential field extension of £F and let the field of constants of

JF and g be C which is algebraically closed. Let J—><+ 2Ii" i/i/3*Eg((j8)) be a

generic specialization over SF. Let E he an algebraic closure of the field

C((8)) and let (wi, ■ • • , co„), (Xi, • • • , X„) be fundamental systems of zeros

of L(t, y), L(t, y) respectively as given by Theorem 1. Under these conditions

Theorem 2 states:

(1) 3(t, on, ■ ■ ■ , an, E) is a P.V.E. of M(t, E).

(2) If GE respectively Hc is the group of all automorphisms of

S(t, coi, • • • , a>„, E) over 5(t, E) respectively g(Xi, • • • , X„) over g (identified

with an algebraic matric group with coefficients in E respectively C by the

given fundamental system of zeros («i, • • • , co„) respectively (Xi, ■ • • , X„)),

then the analytic specialization (/, coi, • • • , co„)—>(J, Xi, • • • , X„) over JF in-

duces an analytic specialization of the elements of a certain subgroup KB

of GE which is a group homomorphism of KE onto Hc. In particular if the

field of constants of 3{t, coi, • • ■ , co„) is C then Hc is a subgroup of Gc.

Theorems 3, 4, and 5 give sufficient conditions for the existence of an ex-

tension of an analytic specialization t—*l over J to a specialization

(/, wi, • • • , un)—>(i, Xi, • • ■ , X„) over JF where 5(t, «i, • • • , con) is a P.V.E. of

yj(t), under the added assumption that the field of constants of 5(t, t) is the

same as that of SF, namely C.

In part II we introduce the notion of a "generic equation with group G"

for homogeneous linear differential equations of order n. This is analogous to

what E. Noether did for algebraic equations (E. Noether [4]). Roughly speak-

ing, given an nXn algebraic matric group G we seek an wth order homo-

geneous linear differential polynomial L(t, y)EC(h, ■ ■ ■ , t„){y}, where

t = (h, • • • , t„) is a family of n differential indeterminates over C such that

there exists a fundamental system of zeros (jj, • ■ • , y„) of L(t, y) with,the

following properties:

(1) C(yi, ■ ■ ■ , yn) is a P.V.E. of C(tu ■ ■ ■ , t„) with group of auto-

morphisms G.

(2) For any specialization (ti, ■ ■ ■ , <»)—>(?i, • • • , t„) over C which can

be  extended   to  a  specialization   (ti, ■ - - ,  tn,  yi, ■ ■ ■ ,  yn)—*(h, ' • * >   tn,
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% • • • , Jn) with C(h, ■ • ■ , h, % ■ ■ ■ , yn) a P.V.E. of C{h, ■ • ■ , k) the
algebraic matric group 27 of C(h, ■ • • , in, y\, ■ • • , yn) over C(h, ■ ■ ■ , in) is

a subgroup of G.

(3) If EF is a differential field with field of constants C and if EF(Xi, • • • , X„)

is a P.V.E. of EF with group 77CG, where (Xi, • • • , X„) is a fundamental sys-

tem of zeros of a homogeneous linear differential polynomial 7,(y)£EF{y} of

order w, there exists a specialization (tx, ■ • • , tn)—>(ix, ••-,/„) over C such

that /,-GEF (* = 1, • • • , n) and L(i, y) =L(y).

By an argument similar to that which E. Noether used, we show that the

existence of a "generic equation with group G" implies that the differential

subfield of C(yi, • • • , y„) consisting of the invariants of G is purely differ-

entially transcendental over C. We then proceed to show how to construct a

"generic equation with group G" of any order w for the following groups G:

(1) Full linear group.

(2) Unimodular group.

(3) Reducible group consisting of all nonsingular matrices (a,-,-) (i, j

= 1, ■ ■ ■ , n) such that ar+k,m = 0 (k = l, ■ ■ ■ , s; m = l, ■ ■ ■ , r; r+s = n).

(4) Orthogonal group.

(5) Symplectic group.

I wish to take this opportunity to thank Professor Ellis R. Kolchin for

the numerous valuable suggestions and criticisms that he has given me, with-

out which this paper would not have been possible.

Notation. Throughout this paper EF will stand for an ordinary differential

field of characteristic zero whose field of constants C is algebraically closed.

We shall use B, D, E for fields of constants which contain C. G, 27 will denote

algebraic matric groups with coefficients in C; GE, HE will stand for algebraic

matric groups with coefficients in E. [F] means the differential ideal gener-

ated by F, {F} means the perfect (radical) differential ideal generated by F,

in some specified differential ring. By the separant of a differential poly-

nomial F(y) in an indeterminate y we mean 5P/dy(r) where r is the order of F.

h, ■ ■ ■ , tr will always denote elements of a differential field extension of EF;

the point (tx, ■ ■ ■ , tr) will frequently be denoted by /. IF(yi, • • • , yi) will

always stand for the Wronskian of yi, • • • , yr.

I. Specializations and p.v.e.

1. Fundamental systems of zeros.

Lemma 1. Let (an, • ■ • , w„) be a fundamental system of zeros of a homogene-

ous linear differential polynomial L(y)E${y} of order n. Let the field of con-

stants of EF(wi, • • ■ , co„) be D^C and let D be the algebraic closure of D. Then

there exists a fundamental system of zeros p.i= /i?., a,,<«>, (i = l, • • • , w) of

L(y) such that EF(pi, • • • , p„) is a P.V.E. of EF and a,jED (i, j=l, ■ ■ ■ , n).

Proof. Of all fundamental systems of zeros of L(y) let (wx, • • • , 7r„) be
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one such that degree of transcendency of SFdri, • • • , irn) over EF is as small as

possible. By Kolchin's existence theorem (Kolchin [l]) '5(iri, • • ■ , ir„) is a

P.V.E. of 5\ Also, iTi= 2^"_i bijLOj where each bi, is a constant. There, obvi-

ously, exists a specialization (bi,)—>(ai,) over !F(wi, • • • , con) with each a,,ED

such that determinant (at-y)?^0. Let p-i = ^"=1 fflytOy; then any differential

polynomial PEJFjyi, • • • , yn\ which vanishes at (tti, • • • , irn) will vanish

at (mi, • • • , Pn), so that (jui, • • ■ , m») is a specialization of (tti, • • • , ir„) over

iF. Hence the transcendence degree of 3r(/ii, • • • , un) over 3r is ^ that of

5F(7Ti, • • • , 7r„); since the latter is minimal, the two transcendence degrees

are equal, so that (jui, • • • , pn) is a generic specialization of (tti, ■ ■ ■ , irn)

over JF. Hence 3(p.i, • • • , ju„) is a P.V.E. of 3 and pt= 2a«JC0J (a,jED).

Corollary 1. Let L(y)E<S\y) be a homogeneous linear differential poly-

nomial of order n. Let (uii, • • • , co„) and (tti, ■ ■ • , irn) be two fundamental

systems of zeros of L(y) each generating a P. V.E. of 'S and let G and H be their

respective groups, each identified with an algebraic matric group by the respective

fundamental system. Then there exists an isomorphism of SF(a>i, • • • , u>n) onto

SF(7Ti, • • • , irn) over ff and there exists an invertible nXn matrix S over C such

that H=SGS-1.

Proof. Let (pa, ■ ■ • , fxn) he a fundamental system of zeros of L(y) with

degree of transcendency of 3r(/xi, • • • , p.n) over % as small as possible. Let

Pi= 52"_i bjjtOj (i = l, ■ ■ ■ , n). Then as in the proof of Lemma 1 there exists

a generic specialization (Xi, • • • , X„) of (pi, ■ ■ ■ , pn) over SF such that

X< = /.audi (i = 1, • • • , n) with each a,-, E C, so that 5F(wi, • • • , con)

= 3r(Xi, • ■ • , X„) and the matric group of SF(Xi, • • • , X„) over *5 is T~lGT

where T= (a,-,). Since (Xi, • • • , X„) is a generic specialization of (pi, ■ ■ ■ , pn)

over 3r, SF(/ji, • • ■ , pv) is isomorphic to JF(Xi, • • • , X„) = 3r(wi, • • • , u„) and

the group of 3(ui, ■ ■ ■ , pn) over 'S is also T~1GT. By the same argument

JF(7Ti, • • • , w„) is isomorphic to F(pi, • ■ • , un) and the group of F(jui, • ■ • , txn)

is similar to H. Hence 3(iri, ■ ■ • , irn) is isomorphic to !F{wi, • • • , co„) and H is

similar to G, i.e., is of the form SGS-1.

Corollary 2. Let (coi, • • • , con) be a fundamental system of zeros of a homo-

geneous linear differential polynomial L(y)E'S\y\ of order n. Let the field of

constants of 3:{wi, • • • , «„) be D^.C. Let D be the algebraic closure of D. Let

7r,= 2Z"=1 bijiOj (i = 1, ■ ■ ■ , n) be a fundamental system of zeros of L(y) such

that 5F(iri, • • • , irn) is a P. V.E. of SF. Then there exists a generic specialization

("Ti, • ■ ■ , 7r„)—>(jUi, • • • , Pn) over SF where p.i= ]C"-i aa°3i w^ eac^ o,,jED.

Proof. By Corollary 1 the transcendence degree of all P.V.E. of 5 associ-

ated with L(y) over JF are equal. Hence degree of transcendency of

SF(xi, • • • , irn) over SF is least. Then, as in the proof of Lemma 1, there exists

a generic specialization (in, ■ ■ ■ , irn)^>(ui, • ■ ■ , pn) over 5F such that

Pi= Y^l-i aifi>s wit*1 floEF>-
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Corollary 3. Let the field of constants of EF(s, s) be C and let s-^s be a generic

specialization over EF. Let (Xi, • • • , X„) be a fundamental system of zeros of

E(s, y) =ao(s)yM+ ■ ■ ■ +an(s)yE$(s){y} such that the field of constants of

EF(s, 5, Xi, • • • , X„) is C. Then there exists a fundamental system of zeros

(ux, ■ ■ ■ , un) of L(s, y) such that (s, Xi, • • • , Xn)—>(5, P-i, ■ ■ ■ , un) is a generic

specialization over EF and the field of constants of EF(s, s, Xi, • • ■ , X„, Ui, • ■ • , un)

is C.

Proof. Let (o>i, • • • , con) be a fundamental system of zeros of L(s, y) such

that the field of constants of £F(s, s, Xi, • • • , X„, wi, • • • , w„) is C. Let

(s, Xi, • • • , Xn)—>(s, 7Ti, • • • , tt„) be a generic specialization over EF (extending

the generic specialization s—>5 over EF). ThenEF(s, o>i, • • • , «„),SF(S, 7Ti, • • ■ ,irn)

are P.V.E. of SF(s) with 7r,- = £."-i b&>i where bijED^C. By Corollary 2 there'

exists a generic specialization'(^i, • ■ • , tt„)—>(pi, • • • , p„) over EF(s) where

Pi = X"-i aa0}i with dijEC; so that the field of constants of

5(S,  S, Xl,   •  •  •  , Xn,  Hi,  •  •  •   , Pn)

is C. Also, (s, Xi, • • • , X„)—>(S, 7Ti, • • • , 7r„)—»(S, pi, • ■ • , p„) are both

generic specializations over EF. Hence (s, Xi, • • • , Xn)—>(i, ux, • • • , un) is a

generic specialization over EF.

2. Analytic specializations. A specialization (tx, • • • , ti)—*(h,,- • • , H) over

EF will be called analytic if there exist r formal power series Uj = ij+ y^l, fqfi*

. (j = l, ■ ■ ■ , r), with coefficients/,-y in some differential field extension g of EF,

in a constant fi transcendental over g, such that (tx, • ■ ■ , tr)—>(pi, ■ • • , pi) is

a generic specialization over EF. If ti, • ■ • , tT are differentially algebraically

independent over EF any specialization (ti, • ■ • , tr)—»(J1( • • • , ir) is analytic,

since (tx, • ■ • , /r)—>(/i+Zi/S, • • • , ir+zrfi), where Zx, ■ ■ ■ , zr are r new differ-

ential indeterminates, is a generic specialization over EF.

Lemma 2. Let F(y) (EEF {y} be an irreducible differential polynomial of order

n. Let t be a generic zero of the general component of F(y). Let t—rt be any

specialization over EF such that the differential polynomial K(z) formed by the

sum of terms of lowest degree of F(i+z) £EF(/) j z} is of order n. Then the special-

ization t—rt is an analytic specialization over EF.

Proof. Let Af(z) be an irreducible factor of K(z) of order w and let/i be

a generic zero of the general component of Af(2); then by the Ritt power

series process (Ritt [3]) there exists a zero u of F(i+z) of the form u=fifi

+ 2li=2fifi*i where the ut are fractions with a common denominator such

that 1< • • • <Ui<Ui+i. Now, if any differential polynomial P(s)£EF(/){z}

vanishes for z = u, the sum of the terms of lowest degree must vanish for

z=fi\ since/i can not satisfy any differential equation of order less than w •

neither can u. Also, i+u=i+2~li=ififilli is a zero of F(y). Suppose there

existed a differential polynomial P(y)£EF{y} of order less than w which van-

ished for y=i+u; then P(i+z)E5{i){'z\'Would be of order less than w and
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would vanish for z = u, which is impossible. Hence t + u is a generic zero of the

general component of F(y). Since the p., have a common denominator we can

replace 8 by a power of itself to obtain a power series t+ ■ ■ ■ with the re-

quired properties.

Corollary 1. Let h, • • • , tr, h, • • • , tr be elements of some differential

field extension of'S and let (ti, • • ■ , tr-i)^>(fi, • • • , ir-i) bean analytic special-

ization over JF. Let tT be a generic zero of the general component of an irreducible

differential polynomial

F(h, • • • , <r_i, y)E${h, ■ ■ ■ , tr-i, y]

over JF(<i, • •'■ , tr-i). Let F be of order n in y. Let (ti, ■ ■ ■ , tr)—*(ti, ■ ■ ■ ,lT) be

a specialization over SF such that the differential polynomial K(z) formed by the

sum of terms of lowest degree in F(ti, ■ • • , tr-i, ir+z) is of order n. Then the

specialization (ti, • ■ • , tr)—*(h, • • • , h) over EF is analytic.

Proof. Let (h, ■ ■■ , tr-i)->(ui, ■ ■ ■ , ur-i), u, = t,+ £,1 ifaP (j = l, • • • .
r — 1), be a generic specialization over JF. Let vB* he the term of lowest degree

in 8 in F(mi, • • • , Mr_i, L). Let M(z) be an irreducible factor of order n of

K(z)+vE$(h, ■ ■ ■ , tr, (fi,)){z\. Let/ir be a generic zero of the general com-

ponent of M(z) and let pi = sm~l, or 1 according as sp^O or 5 = 0 where m is

the degree of K(z). By the Ritt power series process there exists a zero ur of

F(ui, ■ ■ ■ , ur-i, y) of the form Mr = <r+/ir/3|Ji-r-X"=2/t>/3"i where the p( are

fractions with a common denominator such that /i;</x,+i. By the same argu-

ment as above the specialization (ti, ■ ■ ■ , tT)—*(ui, ■ ■ ■ , ur) over J is generic

so that the specialization (h, ■ • ■ , tr)—*(ti, ■ ■ ■ , tr) is analytic.

Corollary 2. Let h, • ■ • , tr, h, ■ ■ ■ , ir-i be as in Corollary 1, and let tT be

a nonsingular solution of F(h, ■ ■ ■ , tr-i, y)E3(h, • • • , tr-i)\y}- Then the

specialization (t\, ■ • ■ , tr)—>(ti, ■ ■ ■ , tr) over SF is analytic.

Proof. Let S(y)E$(ii, • • • , tr-i){y} be the separant of F(*i, • • • , tr-i, y).

Then F(h, ■ ■ ■ , tr-i, K+z) =S(ir)z<-n)+ ■ • ■ . Since S(i)^0 the sum of terms

of lowest degree in F(ti, • ■ ■ , tr-i, iT + z) is of order n. By Corollary 1 the

specialization (ti, • • • , tr)—*(ti, • ■ ■ , tr) over IF is analytic.

Example 1. Let SF = C, let F(y) =y'2 — kyi and let / be a generic zero of

{ F\ (\f\ is a prime differential ideal, for 0 is the only singular zero of F and

by the low power theorem (Ritt [3]) 0 is in the general manifold of F), and let

/=0 then t—H is an analytic specialization over {F. For u = 0+B2(l—8x)~2

= XXo («-r-l)*"|3n+2 (where x' = l) is a generic zero of { F}.

The following example shows that the conditions imposed in Lemma 2 on

/ for t—H to be an analytic specialization over 5 are not superfluous.

Example 2. Let 3r= Cand let F(y) =yy"+y'. [f] is a prime ideal for the

same reason as given in Example 1. Hence 0 is in the general manifold of F.

Let m = 0+^3/</3* be a zero of F(y); then (/i)is,<oo are constants. Indeed,/i

must be a zero of y' which is in the term of lowest degree in F(y), so that/i
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must be a constant; assuming fi (i = l, ■ • ■ , w —1) are constants, then F(u)

= (Hr-ifiP'HYr-nfJ'F) + Ttnfifi', the coefficient of j8» is //, so that/,- is
a constant. Hence u is a constant and can not be a generic zero of {F}. Note,

however, that by Corollary 2 to Lemma 2 if c is any nonzero constant there

exists a generic zero u of {F} of the form u=c+ Ei"ifS{-

3. Specialization of homogeneous linear differential equations.

Theorem 1. Let L(t, y) =a0(/)y(n)+ • • ■ +an(t)yE^{t, y}. Let t-+~tbe an

analytic specialization over EF such that ao(i)?*0 and the field of constants of

EF(/) is C. Then for any fundamental system of zeros (wi, • • • , w„) of L(i, y)

there exists a fundamental system of zeros (tti, • • • , 7r„) of L(t, y) such that

(/, 7Ti, • • • , ir„)—>(i, «!,•••, wn) is an analytic specialization over EF.

Proof. Let /—>/+ Ei" i/»0* be a generic specialization over EF and let

L(i+ Jim y) = EEgaPY"-"
\ i=l / »=0   J-0

where each g,y£EF(J, (/,-)i£,•<«,)• Let \k = wk + Em-i hkmfim (hkm to be deter-

mined). Then

/ oo \noo / oo \

L[i+ E/dS\ x*j = EEf.-^'fwi""" + E ^»H
\ i=l / 1=0   )"—1 \ n=l /

= La, uk) + ±± gj^ + ±i *« e *£: Vm
»=0  j'=0 t=0  j=0 m=l

n      oo     / t v

= EEls* ' + E «.•>•**»*})/3s
i=0   8=1   \ j+m=8 /

= E   E( E £•■;■**»' + s^*" ° ) \P'
8—1 L   •—0 \,'+m—, /J

= E  E ^io^ft*   + E (   E   g.jfctl' + gi.w*B    ) /3*
s=l L   »=0 t=0 \j-+m=s;m<s /J

oo    p n -1

= E L(i< **») + E    E    *«**!l) + gi.w*n l) fi'.
s=l I— i=0   ;+m=s;m<s J

We choose hks successively (5 = 1,2, • • • ) to be solutions of

L(i, y) = - E(     E      guhkm * + gum   " J (ft = 1, • • • , »).
t=0 \;"-|-m=s;m<s /

Then P(/+ E/./3\ A*) =0 (ft = l, • • • , w) and the Wronskian W(\x, • • • , X»)

?^0, for IF(wi, • • • , w„)?^0. Now any differential polynomial

P(i+ T,fifi\ yu---, yn) G ef{/+ Jim yu---, y»}
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which vanishes for y,=Xj (i = l, ■ ■ ■ , n) must have the property that

P(t, coi, • • • , wn) =0. Since t—►<+£<" i/tj8* is a generic specialization over JF

there exists (in, • • • , irn) such that (t, iru - - ■ , 7r„)-»(/+ £/$', Xi, •• • , X„)

is a generic specialization over EF. Hence (t, iri, ■ • • , irn)—*(i, coi, • • • , «„) is

an analytic specialization over EF.

Note. The &*, are solutions of linear differential equations over

$(t, (f»)iSi<«, hki, ■ • ■ , ht,.-i).

Hence it is possible to choose the hk. such that the field  of constants of

3(i,(fi)isi<°°< hk,-i£.<«,,isksn) is contained in B where B is the algebraic closure

of 5(i, (fi)isi<S
If g is a differential field with an algebraically closed field of constants,

and (x!, • • • , 7r„) is a fundamental system of zeros of L(y) = a0y(-n) + ■ • •

+anyEQ{y} such that g(7Ti, • • • , irn) is a P.V.E. of g; then by the algebraic

matric group of Q{iri, ■ ■ ■ , irn) over g we shall always mean (without stating

it explicitly) the algebraic matric group associated with the fundamental

system of zeros (wi, • • • , irn).

Theorem 2. Let L(t, y)=a0(t)y(n)+ ■ ■ ■ +an(t)yE${t, y}, let t—>2

= i+Yli'-iJri8'be a generic specialization over-il such that a0(t) 9^0, let (coi, • • • ,w„)

be a fundamental system of zeros of L(i, y) such that the field of constants of

3(t, (/t)is«<ooi wii • • • i wn) is C, and let Hc be the algebraic matric group of

5{t, (fi), «i, • • • , Un) over $(i, (fi)). Then there exists a fundamental system of

zeros (iri, • ■ • , irn) of L(t, y) and an algebraically closed field of constants E~)C

such that:

(1) The field of constants of iF(t, E) is E, and "S(t, E,m, • ■ ■ ,ir„)isaP.V.E.
of ^(t, E), with the algebraic matric group denoted by GE.

(2) (t, iri, ■ ■ ■ , irn)—*(i, Wi, • • • , w„) is an analytic specialization over 5.

(3) There exists a subgroup KE of GE such that the specialization in (2) in-

duces simultaneously a specialization (&.■;•)—>(8»y) over EF of all the elements (b,/)

of KE such that the mapping (bij)—r(bij) is a group homomorphism of KE onto
Hc.

Proof. By Theorem 1 there exists a fundamental system of zeros

(iri, • ■ • , ir„) of L(t, y) such that (/, 7Ti, • • • , 7r„)—>(£, Wi, • • • , co„) is an

analytic specialization over EF; therefore there exists a generic specialization

(t,m, ■ • ■ , irn)-^(i+Y.r.ifi8i,\u • • • ,X„) overEF, where X;- = w,-|-£i-i £«70*

(j=l, ■ ■ ■ , n), where the field of constants of 5(t, (/,-)is«„, (g»j)is««..is;<«)

is C.
Let the field of constants of EF(7, Xi, • • • , X„) be B. If bEB then

b E 3{t,  (fi)lii<W   (gij)lsi<«.lsisn)((P));

(b = £ rkB\ V = £ rlB* = 0, ri = 0, rk E C)

so that
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be cm).

Let E be the algebraic closure of C((fi)); then the elements of E are frac-

tional power series in fi, with coefficients in C, having the property that only a

finite number of terms with negative exponents have nonzero coefficients,

and that the set of all exponents which appear in terms with nonzero coeffi-

cients have a common denominator. Now EF(£, /, Xi, • • • , X„) is a P.V.E. of

EF(E, /) (Kolchin [2]). Let GB denote the algebraic matric group of auto-

morphisms of this extension.

Let (ajk)EHc- Then (&>*)—>( E"-i an^i) (k = l, ■ ■ ■ , n) is a generic spe-

cialization over EF(/, (/i)is,-<»)- This can be extended to a generic specialization

((<d*)lSi£n,  (gi;)lSi<oo,lSJ£n)  —■* ( (    2-1   flJ*toj) '   (Si>) lS«oo,lS js» )

W j—1 /isian /

over EF(/, (/,)is,<oo). Obviously, then

(o>k + E gikfi*)     -» ( E «/*«i + E ^'j
\ «=1 /la*sn \  j=l ,'=1 / liksn

is a generic specialization over EF(/+ E«-i/^i) = 3:(^)- Since each g,-;-, s<y

(1 ^ i < w, lfSj^Sw) is a zero of a linear differential polynomial we

may assume, by Corollary 3 of Lemma 1, that the field of constants of

EF(C01,   •   •   •  , Wn,(g,-y)lsi<oo,lsjs»!  (sij)igi<x,i*jsn) is C.

Let a be the isomorphism of EF(/, Ai, ■ • • , A„) over EF(/) such that

n oo

trXfc = E aiWj + E Si*/3' (1 = * = w">-
j'=i ,=i

Since Ai, • • • , A» is a fundamental system of zeros of L(t, y) there exist

constants bij such that

n n / oo \

o-x* = E &j*a,- = E*i*(co>+ E c?*//3')-
j=i i-i    \      ,=i     /

Differentiating we find E"-i bjiKf^ =a\f (Ogmg«-l). Solving these linear
equations we obtain

IF(Xi, • • • , X,-_i, c\k, X,-+i, ■ ■ • , X„)
bjk = -

IF(Xi,  ■  •  •   , Xn)

Wlwi,   •   •   •   ,  0),_1,   E   0-mkClm,  6>i+l,   ■   ■   ■   , On) +   ■   •   •

W(ux, ■•",«»)+■••

= «,*+•••,

where the unwritten terms all have degree > 0 in fi. Thus
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bjk E EFK ••-,«„, (gtj), (Sii))((fi)),

whence (since bjk is a constant), bjkEC((fi)). Moreover, every term of bjk of

degree <0 in fi has coefficient 0, and the coefficient of degree zero is oyj:

6y* = ajk + E Cij-fcjS* (djk E C).
i-l

Therefore a = (bjk) is an element of the algebraic matric group of EF(2s, /,

Ai, • • • , A„) over EF(£, /), that is oEGB.

Let KE be the set of all elements (bjk)EGE such that each bjk is of the

form bjk+ Ei" 1 Cijkfi', where CiikEC and (bjk)EHc; then KB is a group and

the mapping (bjk)—^(hjk) is a group homomorphism of KE onto 27c.

Since (/, 7Ti, • • • , ir„)—>(/, Ai, • • • , A„) is a generic specialization over EF

we may identify the field of constants of EF(Z, xi, • • • , 7r„) with the field of

constants of EF(/, Ai, • • • , X„), so that the group of EF(/, E, wx, • • • , ir„) over

EF(/, E) is GB.

Example 1. Let EF = C = field of complex numbers and let / be a transcen-

dental constant over EF. Let / = 0 then /—>0+/3 is a generic specialization over

EF. Let L(t, y) =y"-3ty' + 2t2y, L(0+fi, y) =y" -3fiy' + 2fi2y and L(t, y) =y".
Let wi = 1, w2 = x, iei = eSx, ir2 = (e2l>x — e^x)fi~l then

"    x'fi* "   (2x)i+1 - xi+1
Tl = «1 + E —;-' X2 = C02 + 2^ —-— fi\

*-i    t! ,-=i       (t + 1)!

Let E be the algebraic closure of C((fi)); then the algebraic matric group of

E(e^x, e2&x) over E consists of the set of all matrices

(a    0\
) with a E E

\0    a2/

and a 5^0. Hence the algebraic matric group GE of £(7Ti, ir2) over £ consists of

the set of all matrices

/a    (a2 - ajfi-^
( ) with a E E and a ^ 0,
\0 a2        /

which is the same as the set of all matrices

/1 + bfi     b+ b2fi \
( ) with b E E and b ^ - fir\
V    0        (1 + bfi)2)

The algebraic matric group 27c of EF(1, x) over EF consists of the set of all

matrices

C 0
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Here KE consists of those matrices

/1 + bB     b + b2B\ .
( ) with J££
\     0        (1 + 6/3)7

for which 6 has order ^0 in 8.

The algebraic matric group Hc of Theorem 2 is the group of all automor-

phisms of 5(t, (/,-)is»<oo, wi, • • • , Un) over JF(J, (/<)). Hc is a subgroup of the

algebraic matric group Nc of automorphisms of SF(J, o>i, • • • , «„) over SF(/).

The following example will show that if (bi,)ENc and (hij)EHc there may

not exist (bi,)EGE such that (t, xi, • ■ • , irn, (bi,))—*(i, «i, • • • , «„, (5.v)) is a

specialization over EF.

Example 2. Let EF=C = field of complex numbers. Let/ = ex, / = 0, ~t = 0+fB

= 0+exB and let L(t, y) =y"-[(l+2l'2)e*+l]y' + 21l2e2xy; then t-*i is an

analytic specialization over EF. For the differential polynomial, over EF, of

lowest order which vanishes for y =t is y' —y so that t—H is a generic special-

ization over EF. L(t, y) has a fundamental system of zeros (e", em °). The

algebraic matric group of EF(ex, e", e2 ') over EF(ex) is the full diagonal group;

for the differential equation of lowest order that e' satisfies over EF(ex) is

y'— exy=0, and the differential equation of lowest order that e2 ' satisfies

over 5(ex, e"') is y'— 2ll2exy = 0. Similarly, the algebraic matric group of

EF(2, e^"', e2 s'*) over JF(7) is the full diagonal group, since (t, e*, e2 **)

—*(1, ee", e2 fi,x) is a generic specialization over EF. Now, L(i, y)=y" —y'

which has coi = 1 to2 = ex as a fundamental system of zeros.

Let

A ciTj3<
T1 = e* = i + x; —,

<-i    »!

1/2 x A f(2*)1/2 - lie'*/*"1
Tl = (e2    ft>   _ e^)(2i/2 + l)/8-i = ex + Y, V—^-— - —

ti        (2l'»-l)»I

so that (t, 7Ti, ir2)—>(0, «i, u2) is a specialization over EF. EF{7, xi, ir2) is not a

P.V.E. of SF(<), for 8 which is transcendental over EF(r) belongs to EF(<, xi, x2),

(B = xit(x2' -21'2x2t)-1). Let E be the algebraic closure of C((8)); then the

algebraic matric group GE of E(t, Xi, x2) over E(t) consists of the set of all

matrices

(a    (b - a)(21'2 + l)B~\
I 1       with a, b E E and a, b ^ 0

which is the same as the set of all matrices

/1 + aB   (b - a)(21'2 + l)\
{ I        with a, b E E and a,b ^ — B~\
\    0 1 + bB      )
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The algebraic matric group Nc of EF(«i, w2) over EF is the set of all matrices

of the form

(1    0\
) with 1GCM0.

\0    b)

Since f = ex EF(/, ux, u2) = SF(/) so that 27e is reduced to the identity matrix. It

is easy to see that if (lij)ENc and is not the identity matrix there does not

exist (btj)EGB such that (/, tcx, rr2, (ba))—*(z, cox, o)2, (b^)) is a specialization

over EF.

Corollary. Let the field of constants of EF, EF(Z) and EF(/~, (fi)x&i<x) be C, let

L(t, y) be as in Theorem 2, and let (/, iri, • • • , irn)—*(t, «i, ■ • • , «„) be an

analytic specialization over EF, where EF(/, Ti, • • • , trn) is a P. V.E. of EF(/) with

algebraic matric group G and EF(/, (/,-)is,<oo, «i, • • • , co„) is a P.V.E. of

3(i> (/«')is«oo) with algebraic matric group 27. Then HC.G.

Proof. The algebraic matric group of EF(/, 7Ti, • • • , wn, E) over S(t, E) is

the algebraic group GB, that is, is defined by the same set II of polynomials

with coefficients in C as defines G. Let (bij) EH; by Theorem 2 there exists a

(bij)EGE such that (bi,)—>(5,j) is a specialization over EF and hence over C.

Since (&,-,-) is a zero of II, so is (5,-y), so that 5,;GG.

Remark 1. If the (fi)iii<a,E$(i) then EF(/, C/Y)iSi<oo) = EF(/) so that the

group of EF{/, o>i, • • • , w„) over EF(/) is 27CIG. This condition is, obviously,

satisfied if (tx, • • • , t,)=t are r differential indeterminates over EF.

Remark 2. Let the field of constants of EF(/, i) be C where t—rt is an

analytic specialization over EF. Let (wx, • • • , tt„) be a fundamental system of

zeros of L(t, y)=a0(t)y{n)+ ■ ■ ■ +a„(/)yGEF{/, y} such that a0(i) ^0 and

SF(/, 7Ti, • • ■ , Tn) is a P.V.E. of EF(/). We wish to show that except for certain

singular cases the analytic specialization t—rt over EF can be extended to an

analytic specialization (/, 7Ti, • • • , 7r„)—>(/i, jfi, • • • , 7f„) over EF. For, let

Fi(t, ttx, • • • , tTi-x, y)£EF(/, 7ri, • • • , 7r„_,-, y) be the irreducible differential

polynomial over Q(t, irx, • • ■ , Tfi-x) of lowest order in y which vanishes for

y=7T,-. Suppose that we have already found (fx, • • • , Hi-i) such that

(/, 7Ti, ■ • • , 7T,-_i)—>(/, #!,•••, x,_i) is an analytic specialization over EF

where (#i, • • • , #,_i) are linearly independent and the field of constants

of EF(/, #1, • • • , 7f,-i) is C. Let Si be the separant of P,- with respect to y and

let W(vx, ■ ■ ■ , Hi-x, y)-Si(i, xi, • • • , iri-i,y)E{Pi(t, *i, • • • , *,-iy}. Then

we may choose if,- to be a zero of P<(/, #i, • • • , x,_i, y) such that

W(fi, ■ • ■ , #,)-5f(jfi, • • • , 7f,)^0. Furthermore #,- may be so chosen that

EF(/, jfi, • • • , Jfi) has the field of constants C. By Corollary 2 of Lemma 2 the

specialization (/, jfi, • • • , iri)-*(i, jfi, • • • , iri) over EF is analytic.

4. Extension of specializations. Throughout the rest of this paper we shall

assume that the field of constants of EF, EF(/, /) is C.
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Theorem 3. Let L(t, y)=a0(t)yin)+ ■ ■ -+an(t)yE^{t, y\ and let t-+t

= t+ /.?=-, fiB' be a generic specialization over EF such that ao(t)?*0. Let x be

any nonzero solution of L(t, y) =0 such that the field of constants of EF{/, x) is C.

Then the following holds:
(1) There exists~k = Br(*22"=0giBi), go5^0, r an integer, such that (t, x)—>(t, X)

is a generic specialization over EF:

(2) either there exists an element co such that (t, x)—*(t, co) is a specialization

over EF, where the field of constants of EF(J, w) is C or else (t, x-1)—*(t, 0) is a spe-

cialization over EF;

(3) there exists a nonzero solution co of Lit, y)=0 such that (t, x'x-1)

—>(?, co'co-1) is a specialization over EF and the field of constants of EF(J, co) is C;

(4) if the field of constants of EF(J, (/,-)is««,) is C then the specialization

(t, x)—*(t, co) over EF of (2) and (3) is analytic.

Proof. Let the field of constants of EF(7, (/,)) beB^C. Let (coi, • • • , con) be

a fundamental system of zeros of L(t, y) such that the field of constants of

3(i, coi, • • • , co„) is C. By Theorem 1 there exists a fundamental system of

zeros \k=tok + £„=1 gkmBm (k = 1, ■ ■ ■ , n) of L(t, y). We may assume that

the algebraic closure of the field of constants of EF(J, coi, • • • , co„, (/,)ia,<»,

(gkni)i$m<x-izkzn) is B, as we have noted at the end of the proof of Theorem 1.

Let D be the algebraic closure of the field of constants D of EF(7, Xi, • • • , Xn).

Let x he any zero of L(t, y) such that the field of constants of 5(t, x) is C.

Let (t, x)—*(i, X) be a generic extension of the specialization t—>l over EF. Then

X= £*_i bj\j where each bj is a constant. By Corollary 2 of Lemma 1 we may

assume that bjED (j = 1, • • • , n). If b is any element of D we may write

b=PQ~x where P, <2EEF(7){Xi, • • • , X„}; it follows that b may be expanded

into a power series in 8, having integral powers a finite number of which are

negative, with coefficients belonging to EF(7, coi, • • • , con, (fi), (gkm)), i.e. with

coefficients belonging to B. Consequently any element of D can be expanded

into a power series with fractional powers and coefficients belonging to B.

Replacing 8 by a suitable power of itself we may lose no generality in sup-

posing that bi, • • ■ , bn may be expanded into power series bj = BT' £r°°=o djiB*

(each djiEB, djo^O, rj integers). Therefore we may write X= £j"i bjK,

— £ye/ (djoUj)Br+ • • ■ where r = min (/i, ■ • ■ , r„) and / is the set of all

integers,;' with l^j^n and r,=r. If r = 0 then (t, X) —>(t, ^jej djoco,) is a

specialization over EF. But there obviously exists a specialization (dm, • • •, d„o)

—>(Jio, • • • , dno) with djoEC and djo^0, so that ^2,ej djoCOj = co^O. There-

fore (t, x)—>(t, co) is a specialization over EF and the specialization is analytic

it B = C. It r>0 (t, x)—>(t, 0) is an analytic specialization over EF. If r<0

then (t, 7T-1)—>(7, X-1)—*(t, 0) is an analytic specialization over EF.

Also, X'X~1=j3~rX(/3_rX)~1 and since the lowest power of 8 in 8~r\ is zero

there exists a nonzero specialization over EF B~r\—->«, and this specialization is

analytic if B = C. Hence (t, X'X-1)—♦(/, co'co-1) is a specialization, analytic

specialization, over J according as B~)C or B = C.
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Corollary. Let t, i, 7, L(t, y) be as in Theorem 3 and let (xi, • • • , x„) be

a fundamental system of zeros of L(t, y) such that !F(/, 7Ti, • • • , xn) is a P. V.E.

of EF(/) with algebraic matric group G which contains the full diagonal group.

Then the analytic specialization t—rt over EF can be extended to a specializa-

tion (/, Vi, • • • , x„)—»(/, «i, ■ • • , w„) over EF where the field of constants of

EF(/, coi, • • • , «„) is C. If the field of constants B of EF(/, (/,-)is,-<») equals C then

the specialization (t, Xi, • • • , x„)—»(/, &>i, • • • , w„) over EF is analytic.

Proof. By Theorem 3 there exists (o>i, ■ • • , a„) w.-^O (i = l, • • • , w) such

that (/, x/xr1, • • • , rr'nTrn~1)—*(i, w/wf1, • • • , cojco^1) is a specialization over

EF, and the field of constants of SF(/~, coi, ■ • • , co„) is C. Since G contains the

full diagonal group the differential equation of lowest order which x,- satisfies

over EF(/, x/xr1, • • • , rrjirz1, Xi, • • • , x,-_i) is y'— x/xr'y = 0. Since co,- is a

solution of y'—w/o>r1y=0 (/, x/xr1, • • • , trjirn~1, Xi, • • • , x,-)—>(/, uiciT1,

• • • , coJun~l, Wi, • • • , w.) is a specialization over EF. If 25 = C then the spe-

cialization (/, x/xr1, ■ • • , Xn'xn-1)—»(/, w/wiT1, ■ • • , Wn'co^1) over EF is

analytic and by Corollary 2 of Lemma 2 (/, xi, • ■ ■ , x„)—>(/, coi, • • • , wn) is

an analytic specialization over EF.

This corollary does not say that «i, • • • , w„ are linearly independent. In

fact, as we shall show by example, it may be impossible to find a linearly

independent system of solutions («i, • • • , wn) of Lit, y) such that

(/, xi, • • • , x„)—->(/, Wi, ■ • • , <x)n) is a specialization over EF. However, if the

algebraic matric group G of EF(/, xi, • ■ • , x„) over EF(/) contains the full

triangular group then we have:

Theorem 4. Let t, 1, i, L(t, y) be as in Theorem 3 and let (xi, • • • , x„) be a

fundamental system of zeros of L(t, y) such that EF(/, xi, • • • , x„) is a P. V.E.

of EF(/) with algebraic matric group G which contains the full triangular group.

Then there exists a fundamental system of zeros (wx, • • • , (o„) of L(t, y) such that

EF{/, Wi, • • • , Wn) is a P.V.E. of EF(/) and (t, Xi, • • • , x„)—>(/, Wx, ■ ■ ■ , (o„) is

a specialization over EF. If the field of constants B of EF{/, (/,-)is,-<«,) equals C then

the specialization (t, xi, • • • , x„)—>(/, «i, • • • , con) over EF is analytic.

Proof. We use induction on w to prove the existence of a fundamental sys-

tem of zeros (ax, • • ■ , a„) of L(i, y) such that the field of constants of

EF(/, ai,---, an) belongs to B, the algebraic closure of B, and (/, Xi, • • • , x„)

—*(t, «!,•••, an) is an analytic specialization over EF. For w = l our assertion

is valid for by Theorem 3 there exists X = /3rEf" o gSi such that (/, xi)—>(/, X)

is a generic specialization over EF. Since G contains the full triangular group

any constant multiple of X is a generic specialization of X over EF(Z), so that

(/, xi)—>(7, E<" ogifi') 1S a generic specialization over EF and (/, xi)—>(/, go)go^O

is an analytic specialization over EF. Let w > 1 and let our assertion be true for

lower values than w. Let Pi(/, Xi, y) be the homogeneous linear differential

polynomial of order w —1 in y which has ((x2xr'), • ■ • , (7r„xr')) as a funda-

mental system of zeros; then Li(/, xi,y) =a0(/)xiy(n_1)+ • • -. Since a0(i) go^O
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and (/, 7Ti)—>(t, go) is an analytic specialization over EF, by our induction

hypothesis there exists a fundamental system of zeros (u2, • ■ ■ , u„) of

Li(t, go, y) such that

(t, Xl,  (xiXY1)',   ■   ■   •   ,  (TnXT1)') —> (t, go, M2,  •   ■   ■   . Pn)

is an analytic specialization over EF and the field of constants of

EF(<, go, Pi, ■ ■ ■ , Mn)

belongs to B. For the group of 5(t, xi, (xurr1)', ■ ■ • , (xnXT1)') over EF(<, 7Ti)

contains the full triangular group. Now the equation of lowest order that

Tr.Trf1 satisfies over

EF(/, 7Ti, • • • , ir,-_i, (ir.Trf1)', • • • , (i^irf1)')

is y' — (xixr1)' = 0- Hence the analytic specialization

(t, Xl,   (mxr1)',   ■   ■   ■   ,  (XnXr1)')  —* (l  go, Pt,  •  •  •   , Mn)

over EF can be successively extended to xixr1—>9i where di is a nonzero solution

of y' —pi = 0 (i = 2, • • • ,n) such that the field of constants of EF(7, go, d2, ■ ■ ■ ,

6„) belongs to B. Let ax=go ai = go0» (i = 2, ■ ■ ■ , n) then (t, xi, ■ ■ ■ , x„)

—>(J, cti, ■ ■ ■ , a„) is an analytic specialization over EF. Also IF(ai, • • • ,a„)=*=0;

for suppose there exist constants a,- such that X!"=i aiai — 0- Since a.-^O

(1 ^if^n) at least two of the elements a,- are not zero. Dividing through by

«i we get ci+ Yil-2 ai(a,arl) =0, so that Y3=2 a^a.-af1) = X?=2 a.M. = 0 with

at least one of the constants o,- different from zero, contradicting our induc-

tion assumption. Hence W(oti, ■ ■ ■ , an)?^0 and our assertion is proved.

Now let (cti, ■ ■ ■ , cr„) he a fundamental system of zeros of L(t, y) such that

the field of constants of EF(/, <T\, • • • , a„) is C. Then <r,= y,?_i bi,a, and we

may assume each b,jEB (Corollary 2, Lemma 1). Let (a„) = (bi,)~1 then

a,= 2^"=i a,jCTj with each aijEB; there obviously exists a specialization, over

EF{7), (aij)^(Sij) with each dijEC such that determinant (di,)^0. Let

Ui= 2_/"=i dijffj then (t, x\, ■ ■ ■ , 7r„)—>(7, coi, • • ■ , co„) is a specialization over

EF, and the field of constants of EF(7, coi, • • ■ , co„) is C.

The examples below show that if the group of EF(f, Xi, • • • , x„) over EF(<)

does not contain the full triangular group there may not exist a specialization

(t, xi, ■ ■ ■ ,xn)^>(i,wi, ■ ■ ■ , co„) over EF such that EF(t, coi, • • • , con) is a P.V.E.

of EF{7).

Example 1. Let EF be the differential field of rational functions of x (x' = 1)

over the complex numbers. Let /= (log x)_1 then the differential equation of

lowest order that t satisfies over EF is xy'+y2 = 0. Now, /—>0 is an analytic

specialization over EF, for /—>0+ X]"-o ( — l)'('og x)'/3i+1 is a generic specializa-

tion over EF, since X"=o ( — log x)iBi+l = B[l +(log x)/3]_1, which is not alge-

braic over EF, is a solution of xy'+y2 = 0. Let L(t, y) =xy"+y'; then log x is a

zero of L(t, y) and the specialization £—>0 can not be extended to a specializa-

tion of (t, log x) over EF.
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Example 2. Let EF be the field of complex numbers, let t = ex, / = 0 and let

L(t, y) =y"~ [(l+21'2)ex + l]y' + 21l2e2xy. L(t, y) has a fundamental system

of zeros (ee, e2 "). As we have shown above in Example 2 of Theorem 2,

the specialization t—rt over EF is analytic and the algebraic matric group of

EF(eI, ee", e2 "*) over EF(/) is the full diagonal group. Now, L(i, y)=y"—y'

which has a fundamental system of zeros (1, ex); but the specialization t—>0

has only one possible extension (/, e'', e2 eT)—>(0, Cx, c2) where Cx, c2 are con-

stants which do not give a fundamental system of zeros of L(i, y).

Lemma 3. Let / = (tx, • ■ ■ , tr) be differential indeterminates over EF and let x

be a nonzero solution of a0(t)y'+ax(t)y = 0 (a0(t), <ii(/)GEF{/} without common

divisors) such that EF(/, x) is a P. V.E. of SF(/). Then any specialization t—rt such

that a0(i)9^0 can be extended to a specialization (/, x)—->(/, x) over EF such that

a5*0 and EF(/~ jf) is a P. V.E. of EF(/).

Proof. If x is not algebraic over EF(/) then any nonzero solution x of

a0(i)y' —ax(i)y = 0 such that EF(Z, jf) is a P.V.E. of EF(Z) will do. Suppose x is

algebraic over EF(Z); then since x satisfies a h.l.d. equation of order 1 over

EF(Z) any automorphism of EF(Z, x) over EF(Z) takes x into cx cEC. Also, the

group of automorphisms of EF(Z, x) over EF(Z) is finite of order k so that ck = 1

and

x* = P(i)/Q(l)

(P(t), G/(Z)GEF{z| without common divisors; ft an integer) and

/w        p(t)'Q(t) -p(t)Q(ty
ax(l)/aa(t) = -

kP(t)Q(t)

so that a0(QP'-PQ')=kaxPQ. Assume P(i) =0 and let R be an irreducible

factor of P such thatP(Z~)=0. Let P = R"S (w>0, 5 not divisible by R). Then

R does not divide ao or Q so that Rn divides

QP' - PQ' = Q(nRn-lR'S + RnS') - R"SQ'.

Hence R divides QR'S; it follows that R divides R' which is impossible

since R' is of the same degree as R but is of higher order. Hence P(Z)^0,

and for the same reason G/(Z)^0 so that any solution jf of Q(i)yk — P(i)=0

has the property that (Z, x)—>(Z~, if) is a specialization over EF.

Theorem 5. Let t = (tx, • ■ ■ , ti) be differential indeterminates over EF, let

L(t, y)=ao(t)yw+ ■ ■ ■ +an(t)yE^{t, y} and let (xi, • • • , x„) be a funda-

mental system of zeros of L(t, y) such that 3{t, xi, • • • , xn) is a P. V.E. of

EF(Z) with algebraic matric group G containing the unimodular group. Then any

specialization t^>i over EF such that a0(Z)^0 can be extended to a specialization

(t, xi, • • • , x„)—»(Z, iri, ■ ■ • , if„) over EF such that EF(Z, jfi, • • • , xn) is a P. V.E.

of EF(/) and the Wronskian W(fx, • ■ ■ , if„)^0.
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Proof. If the dimension of G is n2 then any fundamental system of zeros

(ti, • ■ • , xn) of L(t, y) such that EF(7, xi, ■ • • , x„) is a P.V.E. of S(t) will do.

Let the dimension of G be n2 — 1. By Lemma 3 the specialization t—H over EF

can be extended to (t, W)_-->(i, W) where W= W(xu ■ ■ ■ , xn), W^O and the

field of constants of EF(i, W) is C; for IF is a zero of aa(t)y' — ai(t)y. Now, the

group of EF(r, JTi, • • • , xn) over 5(t, W) is the unimodular group of dimension

n2 — 1 which equals degree of transcendence of 5(t, xi, ■ ■ ■ , xn) over EF(<, W).

Hence the differential equation of lowest order that tt,- satisfies over

SF(i, W, xi, ■ ■ ■ , Xi-i), (i=l, ■ ■ ■ , n — l), is L(t, y)=0. For otherwise the

sum of the orders would be less than n2 — 1. Since xn satisfies an equation of

order n — l, i.e. W(xi, ■ ■ ■ , xn-i, y) = W(xx, ■ ■ ■ , xn). Therefore any n — l

linearly independent zeros (xi, • • ■ , xn-i) of L(t, y), such that the field of

constants of EF(7, xi, • • ■ , tb_i) is C, will do. The differential equation of low-

est order that xn satisfies over EF(/, W, xi, - - ■ , ir„_i) is W(xx, ■ ■ • , xn-i, y)

— IF = 0 which is linear and of order n — l. The coefficient of y(n_1) is

IF(7Ti, • • ■ , 7r„_i). Since W(xi, • ■ ■ , if„_i)^0 any nonzero solution xn of

IF(jfi, • • • , xn-i, y)-W = 0 such that EF<7, jfi^j •-,*„) is a P.V.E. of 5(t)
has the property that (t, W,xu ■ ■ - , x„)—>(t, W, xi, • • • , xn) is a specializa-

tion over EF.

II. Generic equation with group G

1. Definition. Let G be an nXn algebraic matric group and let L(t, y)

= Qo(ti, ■ ■ ■ , tr)yM+ ■ ■ ■ +Qn(h, ■ ■ ■ , tr)yEC[h, ■ ■ ■ , tr, y). Let

(xi, ■ ■ • , xn) he a fundamental system of zeros of L(t, y) such that

C(/i, ■ ■ ■ , tr, xi, ■ ■ • , xn) is a P.V.E. of C(h, ■ • ■ , tT) with group G. Then

E(t, y) =0 will be called a "generic equation with group G" if:

(1) h, • • • , t, are differentially algebraically independent over C, and

(2) For every specialization (ti, ■ ■ ■ , tr, x\, • ■ • , xn)—>(/i, • • • , tr,

xi, • ■ ■ , irn) over C such that C(h, • • ■ , ir, xi, ■ • • , irn) is a P.V.E. of

C(h, ■ • ■ ,tr) and field of constants of C(/i, • • ■ , tT) is C, the algebraic matric

group H of this extension corresponding to the fundamental system of zeros

(#i, • • • , xn) of L(t, y) is a subgroup of G.

(3) If (coi, • • • , co„) is a fundamental system of zeros of L(y) =y<n)

+aiy(n-1)+ • • ■ +anyES{y) where EF is any differential field with field of

constants C, and EF(coi, • • • , co„) is a P.V.E. of EF with algebraic matric group

HQG, then there exists a specialization (h, ■ • • , tr)—*(ti, ■ ■ ■ , tT) over EF

with i.EEF such that Qo(h, ■ ■ • , tr)^0 and

at = Qi(iu ■ ■■ , DQrKh, • • • , ir).

2. Necessary and sufficient conditions.

Lemma 1. Let G be an nXn algebraic matric group and let L(t, y)

= Qo(h, • • • , tT)yM+ ■ ■ ■ +Qn(ti, • • • , tT)yEC{ti, ■ ■ ■ ,tr,y} be a "generic



344 LAWRENCE GOLDMAN [July

equation with group G." Then r = n.

Proof. By (1) C(Zi, • • • , Zr)CZC(xi, • • ■ , x„) so that r^w. Suppose r<w.

Let yi, • • • , y„ be w differential indeterminates over C. Then C(yi, • • • , yn)

is a P.V.E. of C(Pi(yi, • • • , y„), • • • , Pn(yi, • • • , y„)) where

p, >      Wj(yx, ■■■ ,yn)
Pi(yu • ■ ■ , yn) = —-        (i = l, ■ • ■ ,n),

Wo(yi, • • ■ , yn)

yi        ■ ■ ■ yn

' (n— i-1) (n—»-l)

(A) Wi=(-iy (n-,-+l) (»-<+l)     •
yi y™

' (n) ' C)

Vl Vn

Let g be the differential field of invariants of G in C(yi, ■ ■ ■ , y„). Then

G(yi, • • ■ , yn) is a P.V.E. of g with group G, for G(Pi, • • • , Pn)Cg- Since

the degree of differential transcendency of C(Pi, • • • , Pn) over C is w there

can not exist any specialization (tx, • • ■ , tr)—>(?i, • • ■ ,ir) over C such that

Qi(iu --• Ji)

Qo(h, -• , ii)
violating (3). Hence r=n.

This lemma shows that if an wXw algebraic matric group G has a

"generic equation with group G" then it is necessary that the differential

field of invariants of G in C(yi, • • • , y„) be purely differentially transcen-

dental over C.

Lemma 2. Let G be an nXn algebraic matric group over C; let

C(h(yi, ■ ■ ■ , y»), • • • , tn(yi, • • • , y„))

be the field of invariants of G in C(yi, ■ ■■ , yn), where yi, • • • , yn are n differ-

ential indeterminates over C. Let

ti(yi, ■ ■ ■ , y») = —--/,-, gi E C{yi, ■ ■ • , yn)     (i = 1, • ■ ■ ,n),
gAy,, ■ ■ ■ , yn)

N      Qlh, ■ ■ ■ ,Q

Piiyi' ■■-'y")- Qodi, ••-,/„)

where P,(yi, • • • , yn) is given by (A). Let

R(fi, •••,/», gu ■ ■ ■ , gn) _    R*(yi, ■ ■ ■ , yn)
Qo(tl, •  ■  ■   , tn)   — •

II gi '(yu • • •. y») II ^*(yi, • • •. y»)
<—i
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Let W0(yi, • • • , yn)E{R*(yi, ■ • • , yn)H"-i gi(yi, ■ • • , ?»)} a«d let

EF(coi, • ■ ■ , co„) Z>e a P. V.E. of EF with group HQG where (coi, • • • , co„) is a

fundamental system of zeros of

L(y) = y<"> + aiy^-v + ■ ■ ■ + any E 5{y}-

Then there exists a specialization (h, • • • , /„)—>(h, • ■ • , h) over C with

UE'S such that

_ QiCh, ■■■ , tn)

QoCh, ■■■ , L)

Proof. Since

n

W0(ui, ■ ■  ■   , COn)  7* 0, 1?*(C01, •••,«„) JI gi(ul, - -  -  . u»)  ^ °-
i=l

Hence

Qi(tl(o>l,  • • •  , CO„), • •  ■   , ln(cOi, ■ ■  •  , COn)
ti(Ol,  •   ■  •   , Wn), -

Qo(h(oii, • • •  , W„), • • •  , /n(cO!, ■ ■ •  , C0„)

are defined. Furthermore /,(coi, • • • , co„) are left invariant by H since HC.G,

so that ti(ui, • • • , co„)EEF. Also, we have

_ .                      .       Qi(ti(ui, • • • , co„), • • • , (»(ui, • • • , co„))
at = F.(wj, • ■ • , ct>„) =- •

Qo(tl((»l,  •  •  •   , «„), •  •  •  , tn(uU   ■  ■   ■   , Un))

Hence the specialization (ti, • • • , tn)—>(<i, • • • , in) = (<i(wi, • • • , co„), • • • ,

tn(ui, ■ • • , Un)) over C gives us

QiCh, ■■■ , 'Q

Qo(h, ■•■, L)

with 7.EEF.
We are going to show how to construct a "generic equation with group

G" ior the following groups G:

(1) The full linear group;

(2) the unimodular group;

(3) the reducible group consisting of all nonsingular matrices (a^) i, j

= 1, • • • , n, such that ar+k.m = 0 (k = 1, • • • , s; m = 1, • • • , r) r, s being

fixed with r+s=n;

(4) the orthogonal group;

(5) the symplectic group.

Our procedure will be as follows. For the differential field C(yu • ■ • , yn),

where yi, • • ■ , y„ are differential indeterminates over C, we shall find n

differentially algebraically independent generators t\, • • • , tn over C of the

differential field of invariants of G in C(yi, ■ ■ • , yn). We shall then show how
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to obtain w + 1 differential polynomials Qo(h, • ■ • , tn), ■ ■ ■ , Qn(h, • • • , Z„)

such that

pi                 \      Qi{h' ' ' ' ' /n) c      1 ^
Pi(yu ■ ■ ■ , yn) = —- (« = l, • • •, w)

Qo\h, - ■ ■ , t„)

where P.(yi, ■ • • , yn) is given by (A). Then

L(t, y) = Qo(k, ■•■ , Qyw + • • • + Qn(h, ■■■ , tn)y = 0

will be our "generic equation with group G."

3. The full linear group. For the full linear group we let tt = Pi(yi, - - - ,yn)

and

L(t, y) = y<»> + Px(yi, • • • , yn)y^~l) + • • • + Pn(yi, • - • , yn)y.

Conditions (1), (2) and (3) are obviously satisfied.

4. The unimodular group. Let G be the unimodular group. Then the

differential subfield g of C(yi, ■ • • , yn) which is left invariant by G is

C(/i, • • • , tn) where ti=W0(yi, • • • ,y») and /,- = Wi(yu ■ • • ,y„) (i = 2, ■ ■ ■ ,

n), Wi(yx, ■ • ■ , yn) being given by (A). For, IF,-(yi, ■ • ■ , yn) is left invariant

by G and is not left invariant by any other nonsingular linear transformation.

Also,

P.-(yi, ■ ■ ■ , yn) = ——- = htx' (i = 2, ■ • • , »),
IF0(yi, • • • , y»)

.       Wi(yu ■■■ ,y„)        ,
^i(yi, •••,>-») = 7777-7 = tf'r1-

IF0(yi, • • • , yj

Hence C(Pi, • ■ • , Pn)EC(tx, • ■ • , QCC(yu ■ • • , y«). Therefore g

= G(/i, • • • , /„>. Now, let

...       . .      (n) 1    (n-l) A (n-l)

P(^ y) = hy    - hy      +2^ <iy      »
»=2

and let

(h,  ■ • •  , tn, yx, ■ • •  , yn) —* (ix, ■ ■ ■   ,  in, yx,  • ■  ■   ,  %)

be a specialization over C such that C(Zi, ■■•,/„, yi, •■• , yn) is a P.V.E. of

G(Zi, • • • ,Zn). Let 27 be the algebraic matric group of C(Z"i, •••,/„, yi, •• • , yn)

over C(Zi, ■••,<») and let a = (an)EH. Then Z~i = <r/i=det. (a{j)ii, and since

ii = IFo(yi, • • • , y„) 5^0, det (a.-y) = 1 and 27 is a subgroup of the unimodular

group. Furthermore since L(t, y) satisfies the conditions of Lemma 2 L(t, y)

= 0 is a "generic equation with group G."

5. The reducible group.

Theorem 1. Let r, s be natural numbers such that r + s = n, and let G be the

reducible group consisting of all nonsingular matrices (a,7)  (i, j=l, • • • , w)
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such that ar+k,m = 0 (k = l, ■ • ■ , s; m = l, ■ ■ ■ , r). Then the differential field g

of invariants of G in C(yi, • ■ ■ , yn) is purely differentially transcendental over

C, and g = C(ti, ■ ■ ■ , tn) where

Wi(yi, ■ ■ ■ ,yr)
ti =- (i = I, • • • , r),

W0(yi, ■ • ■ , yi)

Wi(yu ■ ■ • , yn)
tr+i = —- (* = 1, • • • , s),

W0(yi, ■ • ■ , yn)

(Wi is defined by (A)).

Proof. C(ti, • • • , t„) is, obviously, left invariant by G. Also, any non-

singular matrix cr(P.G will not leave any of the ti (i = l, • • • , r) invariant. For,

the ti(i = l, ■ ■ ■ , r) involve only yi, ■ ■ ■ , yr and if crEG cr/,-must contain at

least one y, (j^l, • • • , r). Since yi, ■ ■ ■ , yn are differential indeterminates

over C they can not satisfy the relation ati = U (i = l, • • • , r).

It remains to show that C(Fi, • • • , Pn)EC(h, • • • , tn). Since G is re-

ducible the differential polynomial L(y) =y(-ni +P1(y1, • • • , y„)y(n_1)+ • • •

+P„(yi, ■ ■ ■ , yn)y is linearly reducible over g (Kolchin [2]) and L(y)

= Li(L2(y)) where L2(y) has yi, • • • , yr as a fundamental system of zeros and

the group of C(yi, • • • , yr) over g is the full linear group. Hence L(y)

= Li(yV+tiy(r-»+ ■ ■ ■ +tr(y) where Li(y)E<3{y}-Let Li(y)=y(>->+Riy(>-»

+ • • ■ +R.yEQ{y} comparing coefficients in L(y) = Li(L2(y)), we get

tT+i = Pi = h + Ri,

tr+2 = P2 = sti +t2 + Rih + Rt,

tr+i = pi = i'ZRk W.s" * )*?*-" + Ri   a = i. • • •, s).
fe_0 I-l \l —   k — J/

where

\i - k - j)

are the binomial coefficients and l?o = l-

We see that the Ri (i = l, ■ ■ ■ , s) are differential polynomials in h, • ■ ■ , tn

with coefficients in C. Also, Pi, • ■ • , P„ are differential polynomials in

Ri, • ■ ■ , R„ h, ■ ■ ■ , tr so that C(Pi, ■ ■ ■ , Pn)EC(h, • • • , Q. Hence

Q = C(h, ■ ■ ■ ,t„).
Set L(t, y) =Li(t, L2(t, y)) where

L2(t, y) = y^ + hy<r-» + ■ ■■ +rJTy

and
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Lx(t, y) = yM + ici(/i, • • • , /n)y(-» + • ■ • + P,(/,, • • • , tn)y

then

L(Z, y) = y<"> + (2i(/i, • • • , /„)y<»-" + ■ • • + Qn(h, ■■■ , tn)y

where

QiEC{h, • •-,/„} (i= 1, ••• ,»).

Let

Ci, • • • . tn, yu ■ ■ ■ , yn) —»(h, ■ ■ ■ , L, yx, ■ • ■ , y»)

beany specialization over C such that (yi, • ■ • , yn) is a fundamental system of

zeros of L(i,y) and C(ii, • • • ,tn, yx, • • • , yn)isa P.V.E.of C(Zi, • • • ,/„). Since

L(i, y)=Lx(i, L2(i, y)), any element (a,-,-) of the group 27 of C(/"i, ■••,/„,

yi. • ■ " i yn) over C(Zi, • • • , Z„) must take the subspace generated by

yi, • • • , y, into itself so that ar+k,m = 0 (ft, m = l, • ■ ■ , s) so that 27is a sub-

group of G. Furthermore since r <n every zero of IFo(yi, • ■ • , yr) is a zero of

IF0(yi, • • • , yn), so that every zero of IF0(yi, • • • , y„)IF0(yi, ■ • • , yi) is a

zero of IFo(yi, ■ • • , y„). Therefore W0(yx, ■ ■ ■ , y„)G{lFo(yi, • • ■ , y„)

■Wn(y, ■ ■ • , yi)} (Ritt [3, p. 27]). Hence the conditions of Lemma 2 are

satisfied and L(t, y) =0 is a "generic equation with group G."

Example 1. Let w = 4 and let G be the group of all nonsingular matrices

(a.-y) with an=a32 = a4x=ai2 = 0 then

L(t, y) = y<4> + hy^ + tiym

+ [ti' + h(t{ +t2- t[) - 3Z,/i' - 2/i/2 + Zi/4 + tl+ 2ti ]y'

+ [ti' + h(ti - txti) + hh - txt{ - t\ + t\ - 2//Z2]y.

Of particular interest is a generic equation for the full triangular group. By

iterating the result for the reducible group we find that the differential field

g of invariants in C(yi, • • • , yn) of the full triangular group is C(/i, • • • , /„)

where

Wi(yu---,yi) ..     .
U =-(1 = 1, • • • , n).

Wo(yi, ■ ■ ■ , yi)

For w = 2,

L(t, y) = y" + hy' - («, + t\ + t[)y.

For w = 3,

L(t, y) = y'" + Uy" + (txh - hh - k - tx - tx)y'

+ [h(txk - h- t{) - t\h + txti + hh - /1" - 2/1/1' ]y.
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6. The orthogonal and proper orthogonal group.

Theorem 2. Let G be the orthogonal group of order n. Then the differential

field g of invariants of G in C(yi, • ■ • ,y„) is purely differentially transcendental

over C and Q = C(to, • • • , tn-i) where

tm = £ (yi"V (m = 0,1,2,- ■■ ).
k-l

Proof. We show that

(1) 2 ± yFyT** = Tai,t £T (0 ̂  m< », 1 g i < oo)
t-1 i—O

where [*/2] denotes the greatest integer ^i/2, and

««= (-l)y-r-^-:f*TJ) (! = *< ».o=i^ [*/2]).
t-j\   ;    /

Indeed, since JXi (y™Y = tm we have 2 £?_, yf'yf+1) = 4 so that (1)
holds for 0 g m < oo, t = 1. Differentiating this equation we obtain 2 2ZytB)yim+2)

= t'J,—2tm+i so that (1) also holds for i = 2. Now let i>2 and suppose that

(1) holds for lowest values of i and for all m; differentiating (1) with i replaced

by i— 1 we find

n ,        . [(i-D/21 ... n
r,    V^ <m>      (m+l> V^ <*~2>) 1    V^ (m+1)       (™+l~V

2 2-i yt yk      =    z_i   o-i-i.fitn+i  — 2 2-i yk     yk
A-l ;'=0 k=l

[(i-D/2] [(t-2)/21
E(»-2)) ^-v («-2-2A)

0i-l,jlm+j — Z-(       dj-2,n'm+I+A

3=0 fc=0

[«-l)/2] [t/2]E<>-2;) ^ (t-2 j)
Oi— l,j'm+j 2—1   a'—2. J— l'm+j

)=0 J-l

[(i-l)/2] .   . .

/*>   i      ST    / ^(,-2,)
— ai-i,otm   ■+■     2-i    \ai~i.i — ai-2,j-i)tm+j

i-l

—   (     —      —      -"-    j a>-2,[i/2]-l/m+[i/2]

l0   ><*A"2' (H»,/rn   ri_rft
- a,,0lm    -f-        Z^       Cijtm+j     -)-  I      —      — - Jffl»,[i72]W[>72]

/ .   aijtm+j

j-0

so that (1) holds for all i^l and all w^O. This shows that 2Zt-iyim)yim+i)

GCJfn, h, ■ ■ • , /„_i} whenever
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2m + i 5= 2w — 2 (i even),        2m + i ^ 2w — 1 (i odd).

In particular, setting i = n — m, we find that

nE(m)    (n) / •.
yk   yk   E C[lo, h, ■ • • , Zn_ij (0 ^ m g w — 1),

&=i

for if m<n — 1 then 2w+w— m^2n — 2 and if m = n — 1 then w — w is odd and

2wz+w— m = 2n — 1. But

c) A       , .    O-r)
y*   = - 2-, PAyu ■ • • , yn)yk

r=l

so that

n n

E Pr(yu ■ ■ ■ , yn) 2~1 yk yk     E c{t0, h, • ■ ■ , z„_x}     (o ^m ^ n — l).
r=l 4-1

This gives rise to w linear equations in Pi, • • • , P„ with coefficients in

C{t0, h, • ■ ■ , tn-x} '■ moreover

(2) det ( E yTyT^j = Wl(yu • • • , y„) ̂ 0.

Hence C(Pi(yi, • • • , y„), • • • , P„(yi, ■ • • , yn))CC(Z0, • • • , Z„_i). Since

ti (i = 0, 1, ■ ■ ■ , n — 1) is left invariant by the orthogonal group and by no

other nonsingular linear transformation, g=C(/0, tx, • • • , Z„_i).

Corollary. Let G be the proper orthogonal group of order n. Then the differ-

ential field g of invariants of G in C(yx, • • • , yn) is purely differentially trans-

cendental over C.

Proof. Obviously g = C(Z0, • • • , Z„_i, W0(yx, • • ■ , yn)). From (2) if we ex-

press |(Et-i y*m)yjtn_r>) I as a differential polynomial in to, • • ■ , Z»-i, the

differential polynomial will contain tn-x only when m = n — 1 and r = 1. Hence

we may solve (2) for tn-x, so that

g = C(Z0, h,--- , tn-2, W0(yx, ■ ■ ■ , yn)).

7. The symplectic group.

Theorem 3. Let n be an even integer > 0 and let G be the symplectic group of

order n (i.e. the nXn algebraic matric group which leaves invariant the bilinear

form  E"=2i (p-is-iVz* — a2svn-x)). Then the differential field Q of invariants in

C(yx, ■ ■ ■ , yn)  of G is purely differentially  transcendental over  C and g

= C(ta, h, ■ ■ ■ , t„-x) where

^   ,     («•)       (m+D (m+1)     (m)

tm = 2*, (y28-iy28     — y2t-i y2> )       (m = o, l, 2, • • •).
s-l
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Proof. Define

V^    .     (i)        (••+*) («'+*)     («').
tik = 2-i (y^s-iyi.    — ys«-i y?..)

»-i

then

ti  =   tn, tik  =   U+l,h-l +  ti,k+l-

We shall prove that

(oj Hfc —      /_,    fl*,j'»+j-l

i'=l

where

(3) certainly holds for all i^O, k = l, 2. Assume inductively that (3) holds

for all i^0 and l^k^r. Now,

_™     (r_W)     iw.] (r_2),

H,r+1   —  Mr —  tvfl.r—1 —       /_,     arfli+j-l        —    /_,  flr-l,j*l+j
I-l 1=1

/r>_uKV/2V V(-2j+2)
= f»    t    2-i   Kari — ar-i.i-i)ii+j-i

1-2

iT'll     1           P  +   H\ /-2[r/2])
—   I      —     +   1   —      -"-      I 3r-l,[r/2]«<+[r/2]

—      Z_(     flr+l,i*t+l—1

1=1

which proves (3) for &=r + l, it therefore holds for all lgLk< oo. It follows

from (3) that tikEC(t0, h, - • • , tn-i) whenever 2i+k^2n — 1. In particular

ti,n-iEC(t0, • • • , <„-i) (* = 0, 1, • • • , « —1). Since

n

yf - - £ Pr(yi, ■ • • , y»)y(B-r) (i = l, • • • , «)
r=l

we have

n n/2

ti,n-i = — 2-,Rr 2-j (yi.-iy^    — yi. y*.-i)
r=l s=l

n

=   —   2-i Prti.n-r-i E C(lo, h, ' ' '  i 'n-l)
r=l

where 2,-,n-*-i= —/n-*,«-(n-*) if n—k<i, we thus obtain a system of n linear
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equations in Pi, • • ■ , P„ with coefficients EC(h, h, ■ ■ ■ , /„_i). If we define

integers a„„ by the equation

n/2

E (y2S-iy2s — y2„y2s-i) = E a^y^y'v
8=1

then the det of the linear system

i       / V^     (i)       ("~~r) (i)    tn-r)\ ,       / V* (')    C-rA
= det I  2-i y28-iy2s      — y2s y2,-i 1 = det I 2_ a^y^ y,       1

= det (y* ) det («„„) -det (y,      ) = det (a„i)W0(yu • • • , y„).

Since det (a„„) = 1 we have

/  n/2 . \

(4) det I  2-, y2.-iyj.      - y2S y2,-i  1 = IF0(yi, • • • , y„) 5^ 0.

It follows that the linear system may be solved for Pi, • • • , Pn, so that

C(Pi, • • • , Pn)EC(to, h, • • • , /„_i). Since C(t0, h, • • • , Z„_i) is left invariant

by G and by no other nonsingular linear transformation, C(t0, h, ■ ■ ■ , Z„_i)

=s-
8. Generic equations for the orthogonal and the symplectic group.

Lemma 3. Let EF(cox, • • • ,con)beany differential field with field of constants C.

Let (ux, ■ ■ ■ , (On) be a solution of either one of the following sets of equations:

(B) E aayi" Vi"   = 0 (*', / = 1, • • • , «, m = 0, 1, • • • , w — 1)

a,j = an E C rank (ai,) > 0.

(C) E bijyTyT" = 0 (i, j = 1, • • • , n, u = 0, 1, • • • , n - 1)
i.i

ba = — ba E C rank (ba) > 0.

Then ux, ■ ■ ■ , (on are linearly dependent.

Proof. Assume the theorem to be false then cox, ■ ■ ■ , (on are linearly in-

dependent. Let rank of (a,-/), (bn) be v>0; then there exists a nonsingular

linear transformation 5 such that S(ok = irk and (xi, ■ • • , x„) is a solution of

E (y*"V =0 Gb = 0, 1, • • • , v - 1) if (wx, •••,«.)
4=1

is a solution of (B). Similarly, there exists S such that Scok = wk and

(xi, • • • , x,) is a solution of



1957] SPECIALIZATION AND PICARD-VESSIOT THEORY 353

^  .   00      OH-l) <*0   (H-l> , .
2^  ()'2»-l>,2. —   J2.   y2»-l  )   =   0 (u  =   0,   1,  •   -   -   ,   V  —   1)
«=1

if (coi, • • • , con) is a solution of (C). Now, from (1) and (2) we see that

W0(yi, • • ■ , yr) belongs to the ideal { Zi-i yL ZLiyi2, • • • , IXi (yt1)2}-
Similarly, from (3) and (4) we see that W0(yi, ■ • • , yi) belongs to the ideal

j   ^   , / I       s v-v   ,     (»-D     (') 0-1)     (O   .
■( 2_, (ysi-iysi — y2.y2.-1), • • •, 2-i (y*«-i y2. — y2.   y2.-i)> •
( .=i .=i j

In either case IF0(7ri, • • • , tt,)=0 contradicting our assumption that

coi, • • • , co„ are linearly independent. Hence coi, • • • , co„ are linearly de-

pendent.

Theorem 4. Let G be either the orthogonal group of order n over C, or else

the symplectic group of even order n over C. Express the differential polynomials

Pi(yi, ■ ■ ■ , yn) in the form

QiUo, h,   ■   ■  ■  ,  <n-l)
Pi(yu • • • , yJ = —7—-—-       (t = 1, • • • , n),

(M'o, H,  *  •  •  , 'n-lj

Qi(to, h, ■ ■ ■ , tn-i) E C{t0, h, ■ ■ • , tn-i}      (i = 0, 1, • • • , n)

where

u = t <rfV
k-l

or

i^  .   (;')      O'+D ()')   (J+D.
tj = 2^ (y2.-iy2.     — y2» y2.-i)

.=1

according as G is orthogonal or symplectic. Then

L(t, y) = Qo(lo, ■•■ , tn-i)yM + Qi(l0, • • • , 'n-Oy'"-1' + ■ ■ ■ + Qny = 0

is a "generic equation with group G."

Proof. We shall give the proof for the orthogonal case. The proof for the

symplectic case is entirely similar.

Let

('0, 'li  •  •  •   1  'n-l, yii  '  *  '   1  Vn) —> ('0,   tl,   ■   ■   •   ,   tn-l, WU   -   -   ■   , C0„)

be a specialization over C such that (coi, • • • , con) is a fundamental system of

zeros of L(t, y) and C(h, h, • • • , in-\, coi, • • • , co„) is a P.V.E. of C(/0, h, • ■ ■ ,

in-i) with group H. Let oEH; then

A .   (O.2 ^ «)   «)
2_/ (oik )   = tt = crti = 2*, ampwm cep

k—1 m,p
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where

a-m-p      apm tz c,

so that

E(«)    (0 -r^   ,    (0.2 v-*   , (•')    («') n
ampiom Up    —   2*1 (">*   )     =   2_, 0mp03m (Op     =   0

m,p m,P

where

(amp if m ?± p,

U»p — 1 if w = p.

Since bmp = bpm, by Lemma 3 if rank of (2>mp) is not zero, Ui, • • • , an are

linearly dependent contrary to our hypothesis. Hence rank of (bmp) is zero and

(0 if m ^ p,

(1 if m = p

so that a belongs to the orthogonal group. Hence 27CG.

It follows from (1) and (2) that the Z,- (i = 0, 1, • • • , w —1) are differential

polynomials in yx, • • • , y„ and that

Qo(t0, h,--- , /n-0 = (-2)"lFo(yi, ■ ■ ■ ,yn)

so that the conditions of Lemma 2 are satisfied and therefore

L(t, y) = Qo(to, h, ■ ■ ■ , /n-i)y(n) + • • • + Qn(k, ■■■ , tn-i)y = 0

is a "generic equation with group G."

Example 1. Let G be the 2X2 orthogonal group then

(Zo'2 - 4Zo/!)y" + [2(/0/i)' - to to' ]y' + (2Z0"Zi - t'ot'x  - 4/i)y = 0

is a "generic equation with group G."

Example 2. Let G be the 3X3 orthogonal group then

(5) L(t, y) = Qoy'" + Qxy" + Q*y' + Q,y = 0

where

Qo = 2{/2(/0'2 - 4/oZO - ti [/„'(/„" - 2Zi) - 2/o/i'] + Zi(Z0" - 2Zi)2},

Qx = (3tl - ti")[2hW - 2Z0 - Z0'Z2' ] + (Zi" - 2/2)[/0'(*o" - 2Zi) - 2t0t{ ]

- Z2'W2 - 4Z0/i),

(6) Q2 = (to" - 2ti)[(2h - Zi")(/0" - 2/0 - tl(3t{ - ti") + till]

+ 2h[(3t{ - t{")t{ - (2/2 - /i")2/0] - 2Z0Zi'Z2',

Q3 = (3Z/  - Z„'   )(Z/2 - 4ZiZ2) + (Zo"  - 2/i)[(Z1"  - 2/2)/(  - 2ZiZ2']

+ 2Z0'Z2(2/2 - //') + tltlti
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is a "generic equation with group G."

Let G be the 3X3 proper orthogonal group then by the corollary of

Theorem 2 the differential subfield of C(yi, y%, y3) which is left invariant by

G is C(tts, h, Wo(yi, ■ • • , yn)) where t0, h is the same as for the orthogonal

case. We may solve for t2 from (6) recalling that Q0= — 8Wo(yi, y2, y3) we ob-

tain

-4IF0 + ti [ti(ti' - 2ti) - 2t0l{ ] - h(tl' - 2ti)2
(7) t2 =-

'o'2-4Wi

if we substitute this expression for t2 in Q2, Q3, (Qi = 8 Wo W0') we obtain

IFo'
(8) L(t, y) = y"' --—/' + Ri(tQ, lu W0)y' + Rt(h, h, W0)y

Wo

where l?i, R2EC(t0, k, W0). The following example shows that (8) is not a

"generic equation with group G" where G is the proper orthogonal group.

Example 3. Let EF = C(x) where C is the complex numbers and x' = l. Let

L(y) = y'" + 2xy' + y

and let ('o, k, t2)—*(0, 1, 2x) be the specialization over C. Then from (6) we

haveQ0 = 8,Qi = 0,Q2 = 16x,Q3 = 8sothat(5)becomesL(i,y)=8(y''' + 2xy'+y).

It can be shown that this specialization can be extended to a specialization

('o, k, t2, yi, y2, y3)—>(0> 1, 2x, coi, co2, co3) over EF where EF(coi, co2, co3) is a P.V.E.

of EF. Hence the algebraic matric group H of EF(coi, co2, «3) over EF must be a

subgroup of the orthogonal group. Since the coefficient of y" in L(y) is 0,

His a subgroup of the unimodular group, so that His a subgroup of the proper

orthogonal group. We are going to show that H= proper orthogonal group.

For, let H0 be the component of the identity of H and let dimension of

H0 = 2 then H0 is solvable (for the dimension of the Lie algebra corresponding

to Ho would have dimension ^2 and is therefore solvable). Then there exists

x a zero of L(y) such that 7r'7r_1 is algebraic over EF, but the coefficients of

L(y) are regular in the whole complex plane so that ttV-1 can not have any

branch points and must be a rational function of x. Now, x'x~l is a zero of

F(z) = z" + 3zz' + z3 + 2xz + I

ii x'x*1 has a pole of order r at a place c?± «> then r = l (for s3, zz', z" have

poles of order 3r, 2r + l, r + 2 respectively; equating 3r = 2r + l we get r = l).

Let u = x~1 then

F(z) = uH — 3uhz + 2ulz + uz* + 2z + u

where z, z denotes differentiation with respect to u. Let r be the order of the

pole of x'x"1 at m = 0 then «(x'7r-1)3 has a pole of order 3r — 1 which is greater

than any other term in F(z). Hence x'x~1 does not have a pole at x= °o so

that
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71

x'x-1 = a0 + E ai(x — c»)_1 a-ijCi E C.
i=i

Solving for x we get x = dea»xYL"-i (x—ci)at. Since x is regular in the whole

plane the a, must be positive integers, so that ir = ea°xP(x), P(x) a polynomial.

Substituting x in L(y) we find that P(x) must be a zero of

K(z) = z'" + 3a0z" + (3al + 2x)z' + (al + 2a0x + l)z.

If w is the degree of P(x) then 2a0xz will have degree w + 1 and all the

other terms in K(z) have lower degree. Hence a0 = 0 and ir = P(x). Let P(x)

— E"-o Ctpc*, then we must have cnxn + 2xcnx"~1 = 0 so that c„ = 0. Hence 270

is not solvable and dimension of 27>2. But 27 is a subgroup of the proper

orthogonal group which has dimension 3 and is connected. Hence 27= proper

orthogonal group.

Now, the specialization t0—->0 makes the denominator in (7) vanish, and

it is easily checked that the denominators of Rx(to, h, Wi) and R2(to, h, Wi)

in (8) also vanish. Hence there does not exist a specialization (to, h, W0, yi,

yi, yi)—*(io, h, W0, cox, co2, ui) over EF such that Lit, y) =L(y), so that L(t, y) of

(8) is not a "generic equation with group G."

References

1. E. R. Kolchin, Existence theorems connected with the Picard- Vessiot theory of homogeneous

linear ordinary differential equations, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 927-932.

2. -, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordi-

nary differential equations, Ann. of Math. vol. 49 (1948) pp. 1-42.

3. J. F. Ritt, Differential algebra, New York, Amer. Math. Soc. Colloquium Publications,

vol. 33, 1950.
4. E. Noether, Gleichungen mit vorgcschriebener Gruppe, Math. Ann. vol. 78 pp. 221-229.

5. B. L. van der Waerden, Moderne Algebra, vol. 1, Berlin, Julius Springer, 1940.

Columbia University,

New York, N. Y.


