Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Syntactical transforms
HTML articles powered by AMS MathViewer

by A. H. Lightstone and A. Robinson
Trans. Amer. Math. Soc. 86 (1957), 220-245
DOI: https://doi.org/10.1090/S0002-9947-1957-0091246-2
References
    J. Herbrand, Recherches sur la théorie de la demonstration, Travaux de la Société des Sciences et des Lettres de Varsovie, Class III, Nr. 33, 1930. D. Hilbert and W. Ackermann, Principles of mathematical logic (English translation), Chelsea, 1950.
  • A. Robinson, Note on an embedding theorem for algebraic systems, J. London Math. Soc. 30 (1955), 249–252. MR 73549, DOI 10.1112/jlms/s1-30.2.249
  • —, Theorie métamathématique des idéaux, Paris, 1955. —, Complete theories, Studies in Logic and the Foundations of Mathematics, Amsterdam, 1956.
  • Arnold Schmidt, Über deduktive Theorien mit mehreren Sorten von Grunddingen, Math. Ann. 115 (1938), no. 1, 485–506 (German). MR 1513200, DOI 10.1007/BF01448954
  • —, Die Zulässigkeit der Behandlung mehrsortigen Theorien mittels der üblichen einsortigen Prädikatenlogik, Math. Ann. vol. 123 (1946) pp. 187-200.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 02.0X
  • Retrieve articles in all journals with MSC: 02.0X
Bibliographic Information
  • © Copyright 1957 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 86 (1957), 220-245
  • MSC: Primary 02.0X
  • DOI: https://doi.org/10.1090/S0002-9947-1957-0091246-2
  • MathSciNet review: 0091246