
ON THE DEVIATIONS OF THE EMPIRIC DISTRIBUTION
FUNCTION OF VECTOR CHANCE VARIABLES

BY

J. KIEFER(') AND J. WOLFOWITZp)

1. Introduction. Let P be a distribution function (d.f.) on Euclicean m-

space, and let Xi, X2, ■ • • , Xn, be independent chance variables with the

common d.f. P. The empiric d.f. Sn is a chance d.f. defined for any x

= (xi, • • • , xm) as follows: nSn(x) is the number of Xis, i=l, • • • , n, such

that, for j=l, • • ■ , m, the jth component Xf of Xi is less than Xy. Define

Dn   =   SUp   | Sn(x)   —  F(x) \  ,
X

Dn   = SUp (Sn(x)  — F(x)),
X

D~  =   SUp (F(X)   - Sn(x)),
X

and

Gn(r) = P{Dn <r/n"2},

G+n(r) = P{D+n<r/n^2},

G~(r) = P{D~<r/n^2).

In this paper we prove two theorems, of which the first is the following:

Theorem 1. For each m there exist positive constants c0 and c such that, for

all n, all F, and all positive r,

(1.1) 1 - Gn(r) <cae~"\

(1.2) 1 - G+n(r) < Coe~"\

(1.3) 1 - Gn(r) < c0e-<

The nub of the theorem is, of course, that it sets a minimum rate at

which Gn(r), G^(r), and G„ (r) go to one as r—> oo, independent of n and P. It

is rather curious that a bound independent of P can be given, since the

limits of Gn, G%, and G„ (as n—»co) depend on P for m>l. The limits of Gn,

G$, and Gn ior m = l are of course known [l] and independent of P when P

is continuous. The limits for m> 1 are at present writing unknown.
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Theorem 1 for m = 1 was proved in [2 ] by a method which took as its

point of departure an exact expression for Gt(r) due to Smirnov [3]. No such

formula is known for the case m> 1. The method of the present paper is en-

tirely different and does not use the result of [2](3). The extension of the

result from m = l to m = 2 presents difficulties; the extension of the result for

m = 2 to larger values of m by our method of proof is obvious, and proceeds

by induction on m. Theorem 1 is used in proving Theorem 2.

The constants Co and c in general depend upon m. We make no attempt

in this paper to obtain the best possible constants or even to perform some

tedious calculations which would improve them. At the end of the proof of

Theorem 1 we calculate possible values of c and give some suggestions for

improving the constants (it is shown in [2] that 2 is the best value of c for

m = l; we also show at the end of the proof of Theorem 1 that c<2 lor m>l).

We also point out that the supremum operation can be performed over a

larger class of sets without affecting the result.

Before stating Theorem 2 we introduce some additional notation. For

fixed F and positive integral k, write Ak for the subset consisting of every

point in Euclidean m-space for which, for l^j^m, the jth coordinate w,

satifies Fj(wj) ^hj/k ^ F,(w,-{-0) lor any integers hj, where Fj is the (marginal)

d.f. of Xf. Write

D„,k = max I Sn(x) — F(x) I .
x^Ak

Dn,k = max \Sn(x) — F(x)\.

Dn,k = max \F(x) - Sn(x)\.
Am

x^Ak

as well as

Gn,k(r) = P\Dn.k <r/n"2\,

G+n,k(r) = P{D+n,k <r/n1'2},

G~k(r) = P{D~,k <r/n1'2},

and

Hn(r, r') = P{D+n < r/n1'2, D~ < r'/n'i2\,

Hn,k(r, r') = P{D+n,k < r/n1'2, D~,k < r'/n"2\.

We shall also denote by

Gm,k, Goo,*, G„,k, Hva.k

(') In a first, unpublished, version of [2], a weaker result than that mentioned below as

appearing in [2] for the case m = l, was proved by a method which has points in common with

the present proof of Theorem 1; one idea used in this method is due to P. Erdos.
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the respective limits as n—><x> of the d.f.'s G„,k, G„tk, GZ,k, and Hn,k; the exist-

ence of these limits is a consequence of the multivariate central limit theorem.

Our second result is

Theorem 2. For every m and F, there exists a d.f. G (resp., G+, G~, H) such

that the sequence of d.f.'s G„ (resp., Gt,G~, H„) converges to G (resp., G+, G~, H)

at every continuity point of the latter as n—> oo and such that the sequence of d.f.'s

G„,k (resp., G~l,k, GZ,k, P»,*) converges to this d.f. G (resp., G+, G~, H) at every

continuity point of the latter as A—> oo .

It is obvious that G, G+, G~, and H cannot be degenerate unless P is.

Of course, as noted above, these d.f.'s depend on P.

Theorem 2 generalizes the result of Donsker [4] for the case m = l; we

remark that our proof starts ab initio and does not make use of Donsker's

result or method. Donsker's result is needed to justify Doob's [5] computa-

tion of G, G+, G~, and H in the case m = l, and Theorem 2 could perhaps

prove of similar use in the more difficult problem of computing these limiting

d.f.'s when m> 1 if this is to be done by consideration of a Gaussian process

(depending on P) with m-dimensional time. Donsker's result was also used in

[2] in the case m = l for proving certain asymptotic optimum properties of

Sn in estimating P.

(Added in proof: In another paper we shall prove that analogous optimal-

ly results hold for Sn when m>l, even though Dn is no longer distribution free

and the distribution theory of Dn is unknown. These results follow from those

of the present paper, arguments like those of [l], and the fact that the

integral of a continuous bounded function with respect to Gn converges to

that with respect to G uniformly in continuous P; the latter result will also

appear in another paper.)

Some generalizations of Theorem 2 are mentioned at the end of §3.

2. Proof of Theorem 1. We shall give a detailed proof for m = 2. As we

have remarked earlier, the proof for general m is by induction on m and is

obvious to carry out. We shall indicate below the point where induction would

be used. The result for the case m = 1 can be obtained by an argument similar

to but simpler than that used below. Alternatively, it can be obtained from

Lemma 2 of [2].

Throughout this section c0 and c will be a generic notation for positive

constants which do not depend on n, r, and P. Hence these symbols in differ-

ent places will not, in general, stand for the same numbers. No confusion will

be caused by this.

We have

(1 - Gn(r)) ^ (1 - G%)) + (1 - G~(r)).

We will content ourselves with proving (1.2). The proof of (1.3) follows in

the same fashion, and (1.1) then follows from (1.2) and (1.3).
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We shall assume that F is continuous. If this is not so (1.1), (1.2), and

(1.3) hold a fortiori; the proof of this is the same as in the one-dimensional

case and therefore obvious. Since F is continuous we may transform X™

and X™ separately so that the marginal d.f.'s F, are uniform on [0, l] with-

out changing Gn(r), G„~(r), or Gn (r); we hereafter assume that the F, are uni-

form on [0, 1].

In the discussion which follows we shall always assume, to simplify the

discussion, that, for any given number X\, there is at most one i such that

Xj" =Xl The probability that this be not so is zero.

In the course of the proof we shall always assume that r <»1/2. The theo-

rem is trivially true when this is not so.

If the theorem is true for all r>R>0, it is true for all r2i0. One has only

to enlarge c0, if necessary, so that c0e~cR > 1; the inequalities (1.1), (1.2), and

(1.3) are then trivially true. It will therefore be sufficient to prove the theo-

rem for all r sufficiently large, say >i?>3. Then n>R2.

Since n and r will be fixed in the present discussion we may allow ourselves

the luxury of a notation simpler than that of the next section and not display

all dependences on n and r. (We remind the reader that c and c0 will not de-

pend on n and r.) Define the events

(                                         r l)
L = <Sn(xu x2) — F(xi, x2) >-for some xi ^ —> >

K »1/2 2;

( r M
L' = \Sn(xu X2) — F(xi, x2) <-for some x\ ^ —> ,

\ w1/2 2)

B = sSnl — > #2) — F\ — > #2) > -for some x2 > ,
I     \2        / \2        /      4m1'2 )

( r M
L = \Sn(xu Xi) — F(xu xt) > -for some xi> —> ,

(. n112 2 )

i rin
L* =  <Sn(xi, X2) — F(x\, x2) >-for some X\ > — , x2 > —> .

\ n112 2 2)

Define the chance variables (z\, z2) when the event L occurs (we shall not

need them when L does not occur) as follows: First, zi is the infimum of those

values Xi (=§1/2) for which supl2[5„(xi, x2) — F(xu x2)]>r/w1/2. There is then

an i such that X[iy =zv We define z2 = X™. We now define the event L(xx, x2)

for any pair xx, x2, O^Xi^l/2, 0^x2^l, as follows: L(xi, x2) is the subset of

L where Zi = Xi, z2 = x2.

Define r(xr, x2) as

1
■- [(least integer > nF(xu x2) + nll2r) — nF(xi, x2)\.
wl/2
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Then, for almost all values (xi, x2) of (zi, z2), the event P(xi, x2) implies the

event

(2.1) \Sn(xu Xi) - F(xh x2) = f(*^l ■

Define, for any x2, 0gx2^l, the events

*m-Ht")-'(t")>H
and

/ =     U U    L(xi, x2)P(x2).

Obviously

1 -Gt(r) =g P{L} +P{L}.

Our immediate goal will now be to prove

(2.2) P{L) < coe-"2

ior all P, and for r sufficiently large, say >P.

We have

P{l}-ess. mi. P{l\ zhz2} ^  I P{j\xi,x2}dXl,X2P{zi<Xi,z2<x2]
J Ogzi£l/!;0£zt£l

= ?{;ni) g p{/} ^ p{p}.

Hence

(2.3) p{^} ^-Vn-r-
ess. inf. P\J | zi, z2j

Our plan to prove (2.2) is as follows: First, we shall prove that

(2.4) ess. inf. p{/| zh z2\ ^ 1/2.

Then we shall prove that

(2.5) P{B\ < coe-"*

for r>R and n>r2.

Suppose the event Z(xi, x2) has occurred. Since there is exactly one i such

that Xt)=Xi, and since

sup [Sn(x{ , x2) — F(x{, X2)] g —-
z2 n1'2

for x[ <Xi, we have
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(2.6) nSn(xu 1) < nF(xu 1) + rn1'2 + 1.

Hence the number N of Xi, • ■ ■ , Xn which have first coordinate greater

than xi is at least

(2.7) M = »(1 - xi) - m1'* - 1.

First suppose that M^0. Then

(2-8) —^ ---(1 + Xl).
nlli n

Obviously 0gr(xi, x2) — r S l/«"2. The event B(x2) occurs when

(2.9) SJ —, Xi)    >   W —,x2)+—^—•
\2        ) \2 /       4m1'2

From (2.1) and (2.8) we obtain that

Sn ( — > X2 ) 2^ Sn(Xi, x2) 2i F(xh x2) -\--
\ 2 / M1'2

^ F(xu x2) + (1 - xi)-
n

(2.10) = f(— , x2j- T^(—' xA - F(xhXi) 1 + (1-xi)-

^(4-«)-(4-«.)+<,-")-7

Since r/4w1/2<l/4, it follows that, for n>R2>9 (which is all we need con-

sider), (2.9) holds.
Suppose now that M>0. Let Ra be the region in the xi, x2' plane defined

by the inequalities

xi < x{ ^ 1/2,        0 ^ x2' g Xi.

In order for 5(x2) to occur it is sufficient, by (2.9) and (2.1), that, of the N

chance variables among X\, ■ ■ ■ , Xn whose first coordinates are greater than

Xi, at least

(2.11) n(F(l/2, x2) - F(xu x2)) - 3rw1'2/4

take on values in R0. We shall compute a lower bound for the probability

of this under the assumption that N= M (>0). It will be easy to see that, if
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N>M or M is not an integer, the probability is a fortiori greater than this

lower bound, which is >l/2 for r>R. This will prove (2.4).

If we define

F(l/2,x2)-F(xi,x2)
(2.12) p =-

1   —  X!

and

n(F(l/2, Xi) - F(xu Xi)) - 3r»1/2/4 - Mp
(2.13) / =-—;

(MP(i - p)y*2

we obtain that

_ r(p - 3/4) + p/n1'2

l~      /Mp(l - p)\^ '

Since p<l/2 and M/n^l it follows that t< —r/4 ior r>R. The probability

in question is the probability that, of M independent Bernoulli chance vari-

ables with common probability p of a "success," the number N* of "successes"

satisfy the inequality

N* - EN*
(2.14) -> t.

(E(N* - PA*)2)1'2

This probability is greater than

{       N* - EN* r)
(2.15) P<->-}

\(E(N* - EN*)2)1'2 4J

which, by Chebyshev's inequality, is greater than 1 — 16/r2, which, for r~>R,

is > 1/2, as was to be proved. This proves (2.4).

From [6, p. 288, Equation (96)], it follows that, for r>R,

(2.16) pj|5.(i,l)-i[>^}<(^.

Suppose now that the event {|S„(l/2, 1) —1/21 ^r/l6n112} occurs. Then the

number Mi of chance variables Xi, ■ • ■ , Xn with first coordinate not greater

than 1/2 satisfies

n       rn112 n        rn112       9m
■-■ = »2 < Mi < n3 =-1-< — •
2 16 2 16 16

Let Tni(x2) denote 1/wi multiplied by the number of chance variables

Xu ■ ■ ■ , Xn whose first coordinates are less than 1/2 and whose second

coordinates are less than x2. The relation
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/ 1 \ / 1 \       rn1'*
(2.17) nSn[ — > x2) - nFl — , x2]> —-

implies the relation

r      / 1        M       rn1'2        rn1'2      / 1 \
(2.18) niTni(x2) -nA2F[ — , x2)    >-F\—,x2),

whose right member is not less than

3m1'2      r(ntyi2       r(wi)1'2

(2.19) ->^— >—— •
16 4 4

The theorem for the case m = l implies that

(2.20) p|supLirni(x2) - m\2F\ — , x2jj   > —-1  < c<*r"\

Equations (2.16) to (2.20) prove (2.5) and hence (2.2).

In the proof of Theorem 1 for general m the induction on m would occur

at this point. We have just used the theorem for m = l to prove (2.5) for

m = 2. We can then use this to prove the result corresponding to (2.5) for

m = 3, and so on (x2 represents all variables other than Xi in this proof, when

m>2).

Returning to the case m = 2, the proof of

(2.21) P{L'} <coe-"'

is practically the same as that of (2.2), and will be omitted. We shall hence-

forth assume that (2.21) holds, and use this fact to prove that

(2.22) P{I} < Coe-°r\

First, applying the result (2.2) to the chance variables X*, X*, ■ ■ ■ de-

fined by X* = (Xf, .X"™), we obtain for the original sequence Xi, X2, ■ ■ ■

that

( r 1)
(2.23) P<Sn(xi, x2) — F(xy, x2) >-for some x2 ^ —■> < coe " .

\ m1/2 2;

For any pair (xx, x2), l/2<Xi^l, l/2<x2^l, we define the following

regions in the Xi', x2' plane:

Ci(*i, ^2) = {x{, x2 I xi < x{ ^ 1, Xi < xi ^ l},

U2(xi, Xi) = {xi", xi I xi < xi  ^ 1, 0 ^ x2' < x2},

Ut(xi, x2) = {x{, x{ I 0 g x{ < Xi, x2 < x2  ^ l},

and the following events for i=l, 2, 3:
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( 1 1
Qi — < for some (xi, x2), — < Xi g 1, — < x2 ̂  1, the number of (Xi, • • •, Xn)

rn1'2 \
in Ui(xi, x2) minus expected number  <-> .

Obviously

I*CQiU0iU Q3.

We shall prove

(2.24) P{QV] < coe-°r\ v = 1, 2,3.

The result (2.24) follows for v = l from the application of (2.21) to the se-

quence of chance variables (1 — Xf\ 1— X\l)), for v = 2 by the application of

(2.21) to the sequence of chance variables (1—A"™, Xf), and for v = 3 by

the application of (2.21) (in the form (2.23)) to the sequence of chance vari-

ables (Xf>, 1-Xf). Thus, (2.24) is proved, and this and (2.23) imply (2.22)
and hence (1.2).

The proof of (1.3) is completed in a similar manner. Obviously (1.2) and

(1.3) imply (1.1). This completes the proof of Theorem 1.

We shall now obtain explicit possible values for the constant c (c0 could be

obtained similarly, but this is of less interest). First consider the case m = 2.

In the definition of the set B, let us replace r/4 by r/(2 + e) with e>0; the

proof of Theorem 1 then still holds, but will yield a larger value of c. Making

appropriate changes in the argument, an analogue of (2.15) holds, as before.

In (2.16) and what follows, put X for 1/16. The constant c on the right side

of (2.16) then becomes 2X2. The displayed inequality on nx becomes

/1        \       m m / 1\
(2.25) m(-Xj <-rXM1/2 < m, < — + rXM1'2 < »(X-|-J.

Equation (2.17) (with 1/(2+ e) for 1/4) and Equation (2.25) imply an ana-

logue of (2.18) with (2.19) replaced by

'""!(2TT-x)>"*1"<?T7-x)/(x + t)"'-

The fact that we can take c = 2 for m = \ implies, in place of (2.20),

P jsup  niTni(x2) - 2niF (— , x2 J   > rM1'2 (-X J / (x + — j    i

(2.26)

<e„Mp(_2f.(_L._x)y(x + l)).

The minimum of the coefficients of r2 in the exponents of (2.26) and th'
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analogue of (2.16) is maximized when e is small by taking X —.266; this gives

c> .142+o(l) as e—>0, in (2.5). The same value of c may be obtained similarly

for L' in (2.21), and also in (2.23). If this value of c is multiplied by 1/9, we

obtain a value applicable in (2.24), (2.22), and (1.2); a similar argument

applies for (1.1). Thus, we also obtain c>.0157 —e' in (1.3) for m = 2, where

e' is an arbitrary positive value. Thus, c = .0157 is a possible value in (1.3)

for m = 2.

For general m, we may similarly obtain a possible value for c. Let 2d2m be

the value for c obtained by this argument for dimension m, with dm>0. For

dimension m we then obtain 2d2m-i(l 12—X)2 for the coefficient of r2 in (2.26)

and thus the solution X of the equation 2X2 = 2<zVi(l/2 -X)2/(X + l/2) is the

value of X which maximizes the minimum of the coefficients of r2 in (2.16)

and (2.26). Rather than carry out the obvious analogue of the case m = 2 in

terms of this inexplicit X, we shall obtain explicitly a slightly smaller value of

c. This value is suggested by the fact that dm-i, and hence the above X, is

small for m>2. Taking then for X the value dm_i/21/2, the two coefficients of

r2 are almost equal, the smaller (that of (2.26)) being

2rfl_i(l/2 - <W21/2)7(l/2 + <W21/2).

The factor 1/9 above must be replaced by (2m —1)~2. Thus, we obtain for

possible values of dm and c (the e' no longer being needed):

2
c = 2dm       (dimension m),

(227) _       ^.(1/2 - U11

(l/2 + 4._,/2'»)"!(2--l)

The above possible value for c is probably not a very good one (c = .0157

for m = 2 and c=.000107 for m = 3). It could be improved by considering

SH(x) — F(x) at a large finite number of lines (in the case m = 2, for example)

instead of just on the line Xi= 1/2; but this would be at the expense of more

tedious computations. The value c = 2 obtained in [2 ] for the case m = 1 is the

best possible in the sense that (1.3) is clearly false for any c>2 and any c0.

We next show that c<2 for m> 1; i.e., (1.3) is false for c = 2 and any c0 when

m> 1 (in fact, this is so even if c0 is permitted to depend on F).

In fact, consider the case m = 2 and suppose Fi is the d.f. which distributes

all probability uniformly on the line L: Xi+x2=l. Then Sn(x, y) =0 w.p. 1 if

x+y^l, and for x+y>l we have nSn(x, y)= number of observations on L

between (1— y, y) and (x, 1— x). Let S*(u)=Sn(u, 1). Of course, S*(w) is a

univariate sample d.f. corresponding to the uniform d.f. on the unit interval.

Denoting by D% and D~ the supremum positive and negative deviations of

S*(u) from the function u, O^w^l, we have, w.p.l.,

i if* * i + —
sup | Sn(x, y) — Fi(x, y) |    = sup | (Sn(u) — u) — (S„(v) — v) \  = Dn + Dn.
x,y u,v
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From [5] we obtain for the limiting d.f. of nll2(D„ +D„) (note,e.g., Equation

(4.6) of [7], which gives the limiting d.f. of w1/2(P>++P~)/2), as r-^00,

lim P{n^2(D+n + D~) > r] ~ %r2e~2r\
n—*«

which demonstrates the impossibility of taking c = 2. We note, in fact, that

(1.3) cannot hold for c = 2 and any c0 and for all absolutely continuous P

'or, instead, for all discrete F); this is obtained easily from the above result by

taking a fixed r so large that 4r2>c0, a A so large that the above limiting

probability for the case of the discrete approximation of Pi is > dr2e~2^, and

an absolutely continuous d.f. P2 whose probability is concentrated on such

small spheres about the discrete points that the probability of a deviation

>r cannot be smaller for P2 than for Pi.

The supremum operation involved in the definition of Dn, D„~, andP^ is

over all sets of the form xy^ay, j = l, • • • , m, for all a = (ai, • • • , am) in

m-space. It is obvious that Theorem 1 applies also to the case when the

supremum is taken over any of several larger classes of sets such as, for

example, that which consists of all rectangular parallelepipeds with sides

parallel to the coordinate planes. This will be of interest in statistical applica-

tions where it is often required or desired that the results be invariant under

certain transformations of the chance variables, e.g., X—> — X.

3. Proof of Theorem 2. Let J™ denote the closed unit m-ce\\

{x\ 0 ^Xi, • • • , xm ̂  1}. We shall first prove Theorem 2 for the case when P

is continuous, and then, at the conclusion of the proof, we shall remark on

how the proof proceeds for discontinuous P. As in §2, since P is now assumed

continuous, it suffices to consider the case where all Py's are uniform on

[0, l], and we hereafter assume we are in this case. Write Qk,o = Im, and for

j> 0 let Qkj be the subset of I™ whose first j coordinates are integral multiples

of 1/A (thus, Qk,m = AT). Write

D„,kJ =  sup  [Sn(x) - F(x)],
ze&,y

Dn.k.j   =    SUp    [F(x)   — Sn(x)].
xgQic.j

For fixed d>0, r, and r', we shall show in the succeeding paragraphs that

lim sup lim sup [P{ £>*,*,,■ < r/n1'2; Dn.k.i < r'/n1'2}
k—* * n—»«

- P{Pv*.y-i < (r + d)/n»2; D~,kj-i < (/ + d)/n"2}] ^ 0

for l^j^m. Adding these inequalities over j yields
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(3.2) lim sup lim sup \_En>k(r, r') — Hn(r + md, r' + md)] g 0.
k—>« n—*m

We have remarked in §1 that lim„ Hnik = Hx,,k exists. Hence, writing r lor

r-x-md and r' for r' -{-md, (3.2) becomes

(3.3) lim sup Hx,k(r — md, r' — md) ^ lim inf Hn(r, r').
k—♦«> n—>«>

Write H*(r, r')=lim supt HX:k(r, r'). Since obviously Hn(r, r')^HHik(r, r'),

we obtain from (3.3),

(3.4) H*(r - md, r' - md) ^ lim inf Hn(r, r') g lim sup H„(r, r') ^ H*(r, r').
n—»» n—»w

Since i?* is clearly monotone and bounded, it is continuous except possibly

on a denumerable set of lines parallel to the coordinate axes. Letting d tend

to zero in (3.4) at continuity points (r, r') of H*, we see that limn H„(r, r')

exists for all points (r, r') in the plane, except possibly on a denumerable set

of lines parallel to the coordinate axes. This limit determines a left-continuous

function H (say) which has variation one by Theorem 1 and which is clearly

a d.f. Hence the sequence Hn converges to a d.f. H at every continuity point

of the latter. Finally, since clearly we can also write, for all continuity points

(r, r') of II,

H(r, r') ^ lim inf Hv,k(r, r')

(3.5)
^ lim sup Hx,k(r, r') ^ H(r + md, r' + md),

letting d—*0 shows that lim^ Hx,k(r, r')=H(r, r') at all continuity points of

the latter, and hence that II«,,k converges to II at every continuity point of

the latter as &—>=o. Thus, the theorem for II will be proved if we can show

(3.1), and the result for G, G+, and G~ can be obtained easily from this result

or else can be proved directly in the same manner as the result for H.

We now prove (3.1). Fix d>0, r, r', and j. For h an integer, write Vk,j,h

for the subset of /'" where h/k<Xj^(h-\-l)/k and write xw) = (xi, • • ■ , Xy_i,

h/k, Xy+i, • • • , xm) if xEVkj,h- Clearly, if the event

A.,* = { Dt,k.i < r/n1'*, D~,kJ < r'/n1'2}

occurs and the event

Ck = {D+n.kj-i <(r + d)/n1'2, D~,k,,-i < (/ + d)/n1'2}

does not occur, it is necessary that for some h with Q^h^k — 1 the event

r„.».» =   {   sup   | [Sn(x) - F(x)] - [Sn(x<») - F(*W)] |   > d/n^X
Uen.,.h )
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occurs. Write A,,*,^ number of Xt (l^i^n) whose values are in  Vkj,k.

Now,

(        \Sn(x) -5„(x«>) . . )
P{rn,k.n} ^Plsup  -^--2—i - A [F{x) - P(*«))]  > dnV2/2NnkjS

\Vk.i,h\        Nnkjh/n J

i jgjy ... \

(3.6) + P< —-1    sup [F(x) - F(z<»)] > d/ln1'*}
\      n vkJ,h )

= P{Fniyi} + P{Znkjn\  (say).

Now, given that N„kjh = N, the event Ynk]-h is a subset of the event that the

maximum deviation of the empiric d.f. of N independent, identically dis-

tributed w-variate random variables from the corresponding theoretical d.f.

is more than (d/2)(n/N)1i2/N1'2. Hence, by Theorem 1,

(3.7) P{ Ynm | Nnm = N\ < c0 exp { -cd2n/N]

where c0 and c are positive constants. Also, by Chebyshev's inequality,

(3.8) P{Nnkjh ^ n/k + n/k1'2} > 1 - 1/m.

From (3.7) and (3.8) we obtain

(3.9) P{ Ynkjh\ < m-1 + co exp { -cW/2}.

Also, an application of Chebyshev's inequality based on the fourth moment

yields

P{iW,}=pj|^-4-  >d/2»A
v \    n A ;

(3.10)
3m2/A2 + n/k _ 16T3        11

m4[^4/16m2]     " rf4LA2      nkj

From (3.6), (3.9), and (3.10) we obtain

, *  ,        A , 16T3        11
(3.11)    P{A„,»-ABl*} <—+Ac0exp{-^2AI'2/2} +—   —+ —   ,

m d4 L A       n J

which proves (3.1) and, hence, Theorem 2 in the continuous case.

We now remark on the method of proving Theorem 2 when P has dis-

continuities. The conclusion follows by the same method as that used to

prove Theorem 2 for continuous P, upon noting the manner in which any

discontinuous P can be obtained from a continuous one by "lumping to-

gether" (in the same manner as that used to obtain Theorem 1 for discon-

tinuous P) certain points in the domain of the latter.

Generalizations of the theorem may be obtained by noting that, as in the

case of Theorem 1, the conclusion of Theorem 2 holds if the supremum of ob-
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served from theoretical frequency is taken over a larger class of sets than those

of the form x,^a,,j=l, ■ ■ ■ , m (for all a in w-space).
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