On the deviations of the empiric distribution function of vector chance variables
HTML articles powered by AMS MathViewer
- by J. Kiefer and J. Wolfowitz
- Trans. Amer. Math. Soc. 87 (1958), 173-186
- DOI: https://doi.org/10.1090/S0002-9947-1958-0099075-1
- PDF | Request permission
References
- A. N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione, Inst. Ital. Atti. Giorn. vol. 4 (1933) pp. 83-91.
- A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist. 27 (1956), 642–669. MR 83864, DOI 10.1214/aoms/1177728174
- N. V. Smirnov, Approximate laws of distribution of random variables from empirical data, Uspehi Matem. Nauk 10 (1944), 179–206 (Russian). MR 0012387
- Monroe D. Donsker, Justification and extension of Doob’s heuristic approach to the Komogorov-Smirnov theorems, Ann. Math. Statistics 23 (1952), 277–281. MR 47288
- J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statistics 20 (1949), 393–403. MR 30732, DOI 10.1214/aoms/1177729991 P. Lévy, Théorie de l’addition des variables aléatoires, Paris, Gauthier-Villars, 1937.
- M. Kac, J. Kiefer, and J. Wolfowitz, On tests of normality and other tests of goodness of fit based on distance methods, Ann. Math. Statist. 26 (1955), 189–211. MR 70919, DOI 10.1214/aoms/1177728538
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 87 (1958), 173-186
- MSC: Primary 60.00; Secondary 62.00
- DOI: https://doi.org/10.1090/S0002-9947-1958-0099075-1
- MathSciNet review: 0099075