Orbits of highest dimension
Authors:
D. Montgomery and C. T. Yang
Journal:
Trans. Amer. Math. Soc. 87 (1958), 284-293
MSC:
Primary 55.00; Secondary 22.00
DOI:
https://doi.org/10.1090/S0002-9947-1958-0100272-7
MathSciNet review:
0100272
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886
- [2] D. Montgomery, H. Samelson, and L. Zippin, Singular points of a compact transformation group, Ann. of Math. (2) 63 (1956), 1–9. MR 74773, https://doi.org/10.2307/1969986
- [3] D. Montgomery, H. Samelson, and C. T. Yang, Exceptional orbits of highest dimension, Ann. of Math. (2) 64 (1956), 131–141. MR 78644, https://doi.org/10.2307/1969951
- [4] A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35–43. MR 33830, https://doi.org/10.1090/S0002-9939-1950-0033830-7
- [5] D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108–116. MR 87036, https://doi.org/10.2307/1969667
- [6] G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432–446. MR 87037, https://doi.org/10.2307/1970055
- [7] P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690–711. MR 177, https://doi.org/10.2307/1968950
- [8] C. T. Yang, Transformation groups on a homological manifold, Trans. Amer. Math. Soc. 87 (1958), 261–283. MR 100271, https://doi.org/10.1090/S0002-9947-1958-0100271-5
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.00, 22.00
Retrieve articles in all journals with MSC: 55.00, 22.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1958-0100272-7
Article copyright:
© Copyright 1958
American Mathematical Society