Orbits of highest dimension
HTML articles powered by AMS MathViewer
- by D. Montgomery and C. T. Yang
- Trans. Amer. Math. Soc. 87 (1958), 284-293
- DOI: https://doi.org/10.1090/S0002-9947-1958-0100272-7
- PDF | Request permission
References
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- D. Montgomery, H. Samelson, and L. Zippin, Singular points of a compact transformation group, Ann. of Math. (2) 63 (1956), 1–9. MR 74773, DOI 10.2307/1969986
- D. Montgomery, H. Samelson, and C. T. Yang, Exceptional orbits of highest dimension, Ann. of Math. (2) 64 (1956), 131–141. MR 78644, DOI 10.2307/1969951
- A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35–43. MR 33830, DOI 10.1090/S0002-9939-1950-0033830-7
- D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108–116. MR 87036, DOI 10.2307/1969667
- G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432–446. MR 87037, DOI 10.2307/1970055
- P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690–711. MR 177, DOI 10.2307/1968950
- C. T. Yang, Transformation groups on a homological manifold, Trans. Amer. Math. Soc. 87 (1958), 261–283. MR 100271, DOI 10.1090/S0002-9947-1958-0100271-5
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 87 (1958), 284-293
- MSC: Primary 55.00; Secondary 22.00
- DOI: https://doi.org/10.1090/S0002-9947-1958-0100272-7
- MathSciNet review: 0100272