An atomic decomposition of continua into aposyndetic continua
HTML articles powered by AMS MathViewer
- by Louis F. McAuley
- Trans. Amer. Math. Soc. 88 (1958), 1-11
- DOI: https://doi.org/10.1090/S0002-9947-1958-0124033-8
- PDF | Request permission
References
- F. Burton Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545–553. MR 4771, DOI 10.2307/2371367
- F. Burton Jones, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137–151. MR 48797, DOI 10.1090/S0002-9904-1952-09582-3
- R. G. Lubben, Concerning the decomposition and amalgamation of points, upper semi-continuous collections, and topological extensions, Trans. Amer. Math. Soc. 49 (1941), 410–466. MR 5317, DOI 10.1090/S0002-9947-1941-0005317-8
- Louis F. McAuley, On decomposition of continua into aposyndetic continua, Trans. Amer. Math. Soc. 81 (1956), 74–91. MR 86293, DOI 10.1090/S0002-9947-1956-0086293-X
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722 —, Fundamental theorems concerning point sets, The Rice Institute Pamphlet vol. 23 (1936) pp. 1-74.
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
- G. T. Whyburn, Concerning collections of cuttings of connected point sets, Bull. Amer. Math. Soc. 35 (1929), no. 1, 87–104. MR 1561692, DOI 10.1090/S0002-9904-1929-04701-3
- G. T. Whyburn, Non-separated cuttings of connected point sets, Trans. Amer. Math. Soc. 33 (1931), no. 2, 444–454. MR 1501599, DOI 10.1090/S0002-9947-1931-1501599-5
- G. T. Whyburn, Semi-locally connected sets, Amer. J. Math. 61 (1939), 733–749. MR 182, DOI 10.2307/2371330
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 88 (1958), 1-11
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9947-1958-0124033-8
- MathSciNet review: 0124033