An existence theorem for second order parabolic equations
HTML articles powered by AMS MathViewer
- by Edward Nelson
- Trans. Amer. Math. Soc. 88 (1958), 414-429
- DOI: https://doi.org/10.1090/S0002-9947-1958-0095341-4
- PDF | Request permission
References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- F. G. Dressel, The fundamental solution of the parabolic equation, Duke Math. J. 7 (1940), 186–203. MR 3340 W. Feller, Zur Theorie der stochastischen Prozesse, Math. Ann. vol. 113 (1936) pp. 113-160.
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Einar Hille, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, New York, 1948. MR 0025077
- Seizô Itô, The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953), 75–92. MR 56178
- J. R. Kinney, Continuity properties of sample functions of Markov processes, Trans. Amer. Math. Soc. 74 (1953), 280–302. MR 53428, DOI 10.1090/S0002-9947-1953-0053428-1 A. Kolmogoroff, Grundbegriffe der Wahrscheinlichskeitrechnung, Ergebnisse der Mathematik, vol. 2, 1933.
- Daniel Ray, Stationary Markov processes with continuous paths, Trans. Amer. Math. Soc. 82 (1956), 452–493. MR 102857, DOI 10.1090/S0002-9947-1956-0102857-9 J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Zeit. vol. 38 (1933) p. 257.
- I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951), 275–313. MR 41191, DOI 10.2307/2372178
- D. C. Spencer, Heat conduction on arbitrary Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 327–330. MR 56135, DOI 10.1073/pnas.39.4.327
- Kôsaku Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan 1 (1948), 15–21. MR 28537, DOI 10.2969/jmsj/00110015
- Kôsaku Yosida, Integrability of the backward diffusion equation in a compact Riemannian space, Nagoya Math. J. 3 (1951), 1–4. MR 45292
- Kôsaku Yosida, An ergodic theorem associated with harmonic integrals, Proc. Japan Acad. 27 (1951), 540–543. MR 56854
- Kôsaku Yosida, On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5 (1953), 65–74. MR 56177
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 88 (1958), 414-429
- MSC: Primary 35.00; Secondary 46.00
- DOI: https://doi.org/10.1090/S0002-9947-1958-0095341-4
- MathSciNet review: 0095341