The variation of the sign of the real part of a meromorphic function on the unit circle
Author:
Jun-iti Itô
Journal:
Trans. Amer. Math. Soc. 89 (1958), 60-78
MSC:
Primary 30.00
DOI:
https://doi.org/10.1090/S0002-9947-1958-0095957-5
MathSciNet review:
0095957
Full-text PDF Free Access
References | Similar Articles | Additional Information
- N. G. de Bruijn, Ein Satz über schlichte Funktionen, Nederl. Akad. Wetensch., Proc. 44 (1941), 47–49 (German). MR 3803
- A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204–223. MR 33886, DOI https://doi.org/10.1090/S0002-9947-1950-0033886-6
- A. W. Goodman, Typically-real functions with assigned zeros, Proc. Amer. Math. Soc. 2 (1951), 349–357. MR 41920, DOI https://doi.org/10.1090/S0002-9939-1951-0041920-9
- A. W. Goodman and M. S. Robertson, A class of multivalent functions, Trans. Amer. Math. Soc. 70 (1951), 127–136. MR 40430, DOI https://doi.org/10.1090/S0002-9947-1951-0040430-7
- Alfred Herzig, Die Winkelderivierte und das Poisson-Stieltjes-Integral, Math. Z. 46 (1940), 129–156 (German). MR 1301, DOI https://doi.org/10.1007/BF01181434
- Jun-iti Itô, On the function whose imaginary part on the unit circle changes its sign $2p$ times, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1944), 107–114. MR 48572 ---, On the function whose real part on the unit circle changes its sign finite times, Bull. Nagoya Inst. Tech. vol. 3 (1951) pp. 293-305.
- Sôichi Kakeya, On the function whose imaginary part on the unit circle changes its sign only twice, Proc. Imp. Acad. Tokyo 18 (1942), 435–439. MR 16475 R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
- Shigeo Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45–87. MR 48577 S. Ozaki, T. Takatsuka and T. Umezawa, Analytic functions starlike of order $P$ in one direction, J. Dept. Educ. Shizuoka Univ. vol. 1 (1950) pp. 81-87.
- M. S. Robertson, A representation of all analytic functions in terms of functions with positive real part, Ann. of Math. (2) 38 (1937), no. 4, 770–783. MR 1503368, DOI https://doi.org/10.2307/1968833
- M. S. Robertson, A coefficient problem for functions regular in an annulus, Canad. J. Math. 4 (1952), 407–423. MR 51308, DOI https://doi.org/10.4153/cjm-1952-037-1
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.00
Retrieve articles in all journals with MSC: 30.00
Additional Information
Article copyright:
© Copyright 1958
American Mathematical Society