The asymptotic solutions of a linear differential equation of the second order with two turning points
HTML articles powered by AMS MathViewer
- by Rudolph E. Langer
- Trans. Amer. Math. Soc. 90 (1959), 113-142
- DOI: https://doi.org/10.1090/S0002-9947-1959-0105530-9
- PDF | Request permission
References
- Nathan Schwid, The asymptotic forms of the Hermite and Weber functions, Trans. Amer. Math. Soc. 37 (1935), no. 2, 339–362. MR 1501790, DOI 10.1090/S0002-9947-1935-1501790-1
- A. Erdélyi, M. Kennedy, and J. L. McGregor, Parabolic cylinder functions of large order, J. Rational Mech. Anal. 3 (1954), 459–485. MR 62875, DOI 10.1512/iumj.1954.3.53024 W. E. Johnson, Asymptotic solutions of a linear second order differential equation with two turning points, Dissertation, University of Wisconsin, 1952; Bull. Amer. Math. Abstract 58-6-633.
- Rudolph E. Langer, On the asymptotic solutions of differential equations, with an application to the Bessel functions of large complex order, Trans. Amer. Math. Soc. 34 (1932), no. 3, 447–480. MR 1501648, DOI 10.1090/S0002-9947-1932-1501648-5
- R. E. Langer, On the zeros of exponential sums and integrals, Bull. Amer. Math. Soc. 37 (1931), no. 4, 213–239. MR 1562129, DOI 10.1090/S0002-9904-1931-05133-8
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 90 (1959), 113-142
- MSC: Primary 34.00
- DOI: https://doi.org/10.1090/S0002-9947-1959-0105530-9
- MathSciNet review: 0105530