WEIGHTED QUADRATIC NORMS AND ULTRA-
SPHERICAL POLYNOMIALS, I(!)

BY
RICHARD ASKEY AND ISIDORE HIRSCHMAN, ]JR.

1. Introduction. Let »=0 be fixed and let(?)
1 d\"
2" <v + —2—> W,(n,x) = (=11 — x2)*"+1/2<d—) [(1 = a)ntr-1r2]
n X,

be the ultraspherical polynomial of degree # and index » normalized by the
condition

W,in, 1) =1 (n=0,1,--:).
If we define
dQ(x) = (1 — x?)"V2dx,
(2v)n(n 4+ »)T(»)
w(n) = ———,
n!l'(v + 1/2)
then

[ .o, Wm, 230,021 = o, m/s)

where 6(n, m) is 1 if w=m and is 0 if #£m. For all such formulas see [2, vol. 2,
Chapter X ]. The harmonic analysis of ultraspherical polynomials rests upon
the dual convolution structure due to Lewitan [7] and Bochner [1]and de-
scribed below. For a detailed discussion of the implications of the following
formulas, as well as a general survey of the present subject, see [6]. Let f(x)
be a measurable function on [—1=x =< 1] and let us write f(x) €B, if

I = f 15 lanuco

is finite. For f& B, we define the transform f~(n) of f(x) by
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1
() = | f@)W,(n, x)dQ(x) (n=0,1,---).
-1
We then have the (formal) inversion formula

1) = Z F )W, )an(n).

Let us set

Ci(x, y, 2)
= 2PT@)TO)IH — o — 5 — 2+ 2ayy=1[(1L — a1 — 991 —s) ]I

if (1—x2—9y2—2242xyz) >0, otherwise let C,(x, ¥, 2)=0. By a formula of
Gegenbauer [1, vol. 2, p. 177]

1
(1) C(x, v, )W, (n, 2)dQ,(3) = W,(n, x)W,(n, y).
-1
Starting from this result it is possible to show that if fi(x), fo(x) €B, and if
1 1
@ foete@ = [ 0@ 3, Din6)ane),
-1 -1

then fi*fe-(x) EB, and (fixfo) " (n) =fi (n)fa " (n). Let F(n) be defined for
[n=0,1, - - - ] and let us write F(n)Eb, if

[Fll: = 2 | Fm) | wn(m)
n=0
is finite. For FEb, we define the transform F ™ (x) by

F~@) = X F(n)Wy(n, x)os(n) [-15xxs1].

m=0

The inversion formula is then

F(n) = lF" ) W,(n, )dQ(x).
Let -
T2 (1) ok (9) o—; (V) o—n k41wl (), 1
I@)2(c — k)llc — Hie — n)!  (2)(20)i(20), )s o+ »

if B+j+n is even and if max(k, j, n) <o where 20 =k+j+n; otherwise let
¢,(k, j, n) be 0. A formula of Dougall [8] asserts that

cﬂ(k’js ”) =

o

€)) 2 ok, 3, W (n, D)w,(n) = W,(k, ©)W,(j, %),

n=0
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and from this it can be shown that if Fi(n), Fo(n) Eb, and if

(4) FixF,- (n) = Z E Fl(k)Fz(j)Cr(k; 7 ”)wv(k)w7<j)1
k=0 j=0
then Fi%Fs+(n)Eb, and (FixFy) " (x) = F1 (x) F2 " (x).
We shall be concerned in the present paper with those linear transforma-
tions T of functionson [—1, 1] into functions on [—1, 1] which commute with
the convolution operation (2); that is

(Tf1) * f2 = fr* (Tf2).

It is easily seen that to every such transformation there corresponds a func-
tion ¢(n) defined on =0, 1, - - - such that

(TN)y™(n) = [~ (n)i(n).

An equivalent formulation is that if

1@ = T f Wi, Dol
then (formally)

0

Tf(x) = 2 [ (m)(m)W,(n, 2)wn(n).
n=0
Such transformations are called “multiplier” transformations.
For f(x) a real measurable function on [—1, 1] we set

1 1/2
Wl = [ [ swr0 + w0t = wean@ | (<5 <wp<)-
-1
We shall also use i j.to denote the space of functions f(x) for which 93,[f]
is finite.

Our objective in the present paper is to find rather general sufficient con-
ditions which will insure that T= {¢(n) } ¢ be a bounded linear transformation
of M. s into itself. The dual theory, in which the roles of F and f are inter-
changed, will be dealt with in the subsequent paper. We shall there be con-
cerned with those linear transformations ¢ of functions on [z=0,1, - - - ]into
functions on [#=0, 1, - - - ] which commute with the convolution operation
(4); that is

tFl*F2 = Fl*tF2.

To every such transformation there corresponds a measurable function #(x)
defined on —1=x=1 such that

[F]~(x) = Fo(x)1(x).
A (formally) equivalent definition is that if
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F(n) = f F(@)W,(n, £)d9(2)

then .
(tF)(n) = F(x)t(x)W(n, )dQ,(x).
-1

We set

© 1/2 1 1
ERZ[F] = { > F(n)?w,(n)(n + 1)2“} (——2— <a< —2—)
n=0
We also use N to denote the space of functions F(n) for which N,[F] is
finite. In the succeeding paper we shall find rather general sufficient condi-
tions on ¢t=¢(x) which will insure that ¢ is a bounded transformation of 9,
into itself. These papers thus complete investigations initiated in [4].
2. Weighted quadratic norms. Let »>0 be fixed and let 7(%¥) be a non-
negative function defined for k=1, 2, - - - such that Y.y 7(k) < ©. We de-
fine

@ = 3 [1 - Wik, ) ®),

k=1
Sem, ) = 3 clm, n, B)r(h).
k=1
We write f(x) €L if 1] f(x)]dQ(x) < .
THEOREM 2a. If s(x) and S (m n) are defined as above and if f(x) EL* then
1
¢)) f(®)2s(x)d (%) = — Z [~ () — £~ m) [2S(n, m)w,(n)w,(m)

m,n=0
provided that the left hand side is finite.

The assumption fEL! is, of course, necessary to insure that f™(n) is
defined. Let us suppose first that

) f(2)?dQ(x) < e,

a restriction that will be removed at the end of the proof. We expand
[f~(m) —f(m) ]? so that the right hand side of (1) splits into three terms,

f/\(”) 2S(m, n)wv(n)wv(m) s

7?
100
e

J(m)?S(m, n)w,(n)w,(m),



298 RICHARD ASKEY AND ISIDORE HIRSCHMAN, JR.

I3 = — i =)~ (m)S(m, n)w,(n)w,(m).

m,n=0
Because the summand in I; is non-negative we have

1 [J L
h=— 2 /7 (m)%w(n) 22 S(n, m)w,(m).

n=0 m=0

Now

0

i S(n, myw,(m) = 3, w,(m) ;‘t c(n, m, b)r(k)

=X (k) X cln, m, k)w,(m).
k=1 m=0

By (3) of §1 with x=1

0

> c(n, m, B)w,(m) = 1

and thus m‘-o

Using Parseval’s equality we obtain

~ o -

I, = 1r f _11 f(x)?dsz,(x)] > rk) |

[May

2 L L k=1 _
Similarly

1 B 1 [~ © b

= | [ sereem]| Sw)

2 L J 1 L k=1 -
As we have seen the infinite sums defining I; and I, converge absolutely. Now
we have
(3) I = — X [~(mf~m)a,(n)w(m) 32 c(n, m, B)r(R),

n,m=0 k=1

and the inequality
1 1
P QU OIS O S OF

shows that the sum in (3) also converges absolutely; thus
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@  IL=-X ) {E ) 3 f~m)es(n, m, k)w.<m>} ().

n=0 k=1 m=0

We have

ZfA(M)vv(ﬂ m, k)w,(m) = Z f(x)cv(n, m, k)a,(m)W,(m, x)d ().

m=0 m=0

The formal infinite sum is actually finite here and thus the order of summa-
tion and integration can be interchanged. Using (3) of §1 we obtain

3 myes(n, my Byanm) = [ 1@ Won, D)Wk, 2)d0 ().

m=0

Since |W,(k, x)l =1,k=0,1, .., —1=x=1itis easy to see that

3 (8) 3 F(m)es(n, m, Byan(om) = f 1) { > Wik, x)r(k)} W,(n, £)d (3,
k=1 m=0 -1 k=1

_ f_ll f(x){?r(k) . s(x)} W(n, £)d0().

Making use of this and of the definition of f~(z) and employing the general
form of Parseval’s equality in (4) we find that

I = — f_ll f(x)z{ Zj)r(k) - s(x)}dﬂ,,(x).

Combining our evaluations of I1, Iy, and I; our theorem is proved, under the
additional assumption (2).
Suppose that (2) is not satisfied. We set

i f®) >,
fi(x) = {f(%) —j £ flx) =75,
—j ) < -]
Then

1
fj(x)zdﬂl‘(x) < j =12-.-- )
-1
and thus by what we have already proved

f;(x)%(x)d9 (%) = — Z [ () = 7 ) [2S (m, n)w,(m)w,(n).

m,n=0

Now
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lim lfj(x)zs(x)dﬂv(x) = lf(x)zs(x)dﬂv(x)

oo J g
while, since f;~(n)—f " (n) as j—> o (=0, 1, - - - ), we have

liminf 3 [f~(s) — f~(m) ]S (m, wan(m)an(n)

Jo®  m,n=0

2 3 [ ) — ]S m, mw(mps(n).

m,n=0

Thus
(5) f_ llf(x)zs(x)dﬂy(x) = %méo [f~(n) — F~(m)]2S(m, n)w,(m)w,(n).
If |

[ st < =

then given ¢>0 we can choose functions g(x) and k(x) such that
@) = g(®) + (=),

1

[ s@rnm < =,
[ swumine z [ f@s@anm -«

flh(x)“’s(x)dﬂy(x) < e

From the inequality
a? £ (14 e*)(a+ b)2+ (1 + e)b?,
valid for any value of p, and the relation f~(n) =g (n) + k" (n), we obtain

At e 3 [f(n) = f~(m)]2S(m, m)en(m)ar(n)

m,n=0

> 3 (o) — g m)]Sem, n)(mhs(n)

m,n=0

St ) S ) — B m) S, nan(m)en(n).

m,n=0

Using (1) for g(x) and (5) for k(x) we have
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1 0
5 A+ e 22 [ m) — f-m)]2S0m, n)w,(m)w,(n)

m,n=0
= f(2)%(x)dQ(x) — (2 + e)e.

Taking first € arbitrarily small and then p arbitrarily large we see that
1

© 1
© - 2 o) — o W]Sn, mam)ann) 2 | f(2)s(2)d0 ().

The inequalities (5) and (6) together imply our desired result.
THEOREM 2b. If f(x) &L, g(x)EL! and if

1

H@s(2)d2, ) < o, fgw%mamm<w,

then
F(2)g(%)s(x)dD(2)
1 ©
= ? U~ (1) — £ (m) [[g™(n) — g™ (m) |S(m, n)e,(m)w,(n).

This follows from Theorem 2a using the standard device of writing out
(1) for f(x)+g(x) and for f(x) —g(x) and then subtracting the results.
3. Approximations. Let »>0 be fixed(®). We set

(1) @) = 3 [1 = Wi, )]s,

@) Salm, n) = 3 ek, m, m)h-2e,

1

Let us write A(y) =B(y) for yE Y if there exist finite positive constants C,
and C, such that A(y) £ CiB(y) and B(y) £ C,A(y) for yC& Y.

LeEmMMA 3a. If 0<a<1/2 and if sa(x) is defined by (1) then
Sa(2) = (1 — x)2 (-1 =2x2=1).
We have, see [2, vol. 2, p. 175],

WV(”y Ccos 0) = n! Zn (y)"‘(y)n—m

(20)n meo ml(n — m)! cos (n — 2m)6.

(®) The case »=0 requires certain small changes and is left to the reader.
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Setting =0 we see that

n! 2 )n()nm

B (2")” m=0 m‘(n — m)l

and thus

_ nl & (V)m(")"-m
L= Wiln, cos6) = (). Eo m\(n — m)!

[1 — cos (n — 2m)8].
Summing separately over # even and # odd we have

i [1 — W,(2n, cos 6)](2n)—1-2«

n=1

A . Na-iWnrs  (2n)! i
=2l e e i e T

Z [1 — W,(2n + 1, cos 8)](2n + 1)~1-2a
n=0

- (”)n~f(”)n+f+l(2” + 1)!
= 2 1 — 27 1)6 2 1) 12,
2 [t = eos @7 4 0] 2 o G Bt D

Since (#),/r!=~r"1 we have that

(") n—i(¥)n4i(2n) ! o atars et -
R IEEus T 2 = T )

= 2+ 2,

U

where Z; corresponds to the range j<#=<2j and Z, to the range 2j <#. Now

25
3, = jtel Z (n — j)r! = j-2a-1

n=j
~ —2a—2 ~~ ,—2a—1
2y = Zn o m T

n>2j

and thus

i [1 — W,(2n, cos 6)](2n) 12 = i [1 — cos 2]'0](2]")‘?“—‘.

j=1

Similarly

i [1 — W,(2n + 1, cos 6)](2n + 1)~1—2

n=0
0

~ 2 [1 = cos (27 + 1)6](25 + 1)=%1.

a0
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Combining these results we see that

sa(cos 8) =~ D [1 — cos jo]j—2=1.

j=1

Now
d 2 1. o .
— > [t — cosjg]j2==1= Y (sin jO)j 2,
do i j=1
d 0
— > [1 = cosjo]j 2t ~ g-tH2e 6—0+4).
de j=1

For this last step see Zygmund [11, p. 114]. Integrating, we find that

0

> [1 — cos j8]j~2==t =~ (1 — cos )= 0=06=mn);
j=1
that is
Sa(x) = (1 — x)* (-1=x=s1).
LeEMMA 3b. If 0<a<1/2 and if Sa(m, n) is defined by (2) then
Sam, n) = (n+ 1) - (n — m)"1-2 (n > m).
If n>m then

m

Sa(m, n) = E c(n —m+ 25, m n)(n —m+ 2j)" "2,
=0

It is easily verified from this, using the relation (a),/r!~ (r+1)>-! that
Sa(m, n) = (m + N2(n 4+ 1)~

2 (m =+ 1M m—m 4 )G+ 1) — m 277
=0

We must distinguish between two cases, #=3m/2 and n <3m/2. Suppose
n=3m/2. Then (n—m+j+1)=n+1, (n—m+2j)=n+1, and

Salmy ) = (m+ D'H o+ D7 5 = o+ )G+ 1
P2
Now
5 n = DG+ D G D
and thus, since n+1=~n—m if n=3m/2,

Salm, n) = (n + 1)7"2(n — m)~17% (n = 3m/2).
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If #<3m/2 then we have
Sa(m, n) = Z1+ 2, + 24

where 2, corresponds to therange 0 <j<n—m, Z,to therangen—m <j<m/2,
and Z; to the range m/2<j<m. If 0=Sj<n—m (and if m <n<3m/2) then
m—j+1)=n+1), (n—m+j)=n—m), (n—m+2j)=(n—m), m+1=n+1,
and thus

Bim (4 D7 — w2 (4 )

0sj<n—m

~ (n+ 1)7%(n — m)=1-2,

If n—=m<j<m/2 then (m—j+1)=(n+1), (n—m+j)=~G+1), (n—m+2j)
=(j+1), (m+1)=(n+1), and thus

Tex (D X (G DT

n—mgj<m/2

~ (n+ 1)~ (n — myie,

lf{m/2=j<mthen (n—m+j)=mn+1), G+1)=n+1), (n—m+2j) = (n+1),
(m+1)=(n+1) and

= (n 4 1)~ 1-¥-2 E (m — j + 1)1,

m/2<jsm

< =m+1)y?n—m)1-2,
Combining these estimates we see that
Se(m, n) = (n + 1)=2(n — m)~172 (n < 3m/2).
Our demonstration is now complete.
Lemmas 3a and 3b and Theorem 2a together imply the following result.

THEOREM 3c. If 0<a<1/2, and if fEN;, then

L)

NoolfI2 = 2 [[T(n) — - (m)]2Sa(m, n)w,(m)w,(n).

m,n=0,m#n

4. Some inequalities. We begin by noting that the functions

W,(n, cos 6)(sin 0)'wi/2(n) (n=0,1,---),

are orthonormal and uniformly bounded on 0 <0 <, see [2, vol. 2, p. 174 and
p. 206]. If ¢.(0), =0, 1, - - -, are a uniformly bounded orthonormal set of
functions on [0, 5] and if

a(n) = f W(6)n(6)d8,
0
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then if 0Sa<1/2

L]

> a(m)*(R() + 1)~ £ A(a) f §(0)0%2d,

0

see [5]. Here R(0), R(1), R(2), - - - is any rearrangement of 0, 1, 2, - - -
We have

176 = [ s6wton, Do,
Setting x =cos  we find that
@ (m) V12 (n) = fo ’{ f(cos 6)(sin 8)*} { w,(n)/2W,(n, cos 8)(sin 8)*}df
and thus

S /e R + 1175 5 4 [ tcos 0sin o0

n=0

£ A(e) | f(®)( — x)dQ(x).

We have proved the following result.

THEOREM 4a. If 0=Sa<1/2 and if R(0), R(1), R(2), - - - is any rearrange-
ment of 0,1, 2, - - - then

> 1 e(m) [R() + 1] < A(@)Roal 1.
n=0
Let Sy be the multiplier transformation which carries
f@) ~ 2 [ (m)(m)W,(n, x)
nw=0

into

Snf(x) ~ 2‘:) [ (m)w,(n)Wy(n, ).

As a first application of our ideas we prove

THEOREM 4b. If 0<5a<1/2 then

RNo.alSnfl S A(e)Roalf].

We may suppose a>0 since the case =0 follows from Parseval’s equal-
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ity. By Theorem 3c we have

RoolSufl’ = 4 3 [ () — 17 (m)]2Sulm, m)w,(m)w,(n)

m,nsN

+ A4 2 ) Sulm, m)w,(m)e,(n).

msNi;n>N
A second application of this same result shows that
2 v 2
1 2 ) = 7)) Salm, ma(m)e,(n) £ ANoalf]
m,nsN
Further, Lemma 3b implies that if m» £ N then
> Salm, w)w,(n) = Y, (n — m)~1"2« < (N + 1 — m)~2e

>N n>N
Thus
2 [T m)Salm, mw,(m)w, () = 25 f7(m)%0,(m)(N 4 1 — m)~2,
msNin>N m=0
@ 2

< ANo.lf]

by Theorem 4a. The inequalities (1) and (2) together imply our desired result.
5. Bounded multiplier transformations. Let b,=3-2#72, 7, =2+"1, let g, be
the set of integers b,—7, <k <b,+7,, and let

Pu(x) = [1 - 7;2(95 - bu)2]-
If

1) ~ 3 e Wln, )

then we set

Eu(x) = Z I (m)pu(n)w,(n) Wo(n, x).

nea“

LeEMMA Sa. If 0Sa<1/2 then

3 MuE] < AN

p=2

Evidently we may suppose a>0. By Theorem 3c we have

NowlEu” = 21+ 22+ 25

where
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Si= 2 [e®f () = pulm)f~(m) °Sa(m, m)w,(m)w, (),

m,n€o,in>m

2y = Z pu(m)*f ™~ (m)2Sa(m, n)w,(m)w,(n),
mEo,in>oy
Zi= 2 (MY (1) Salm, m)w,(m)w,(n).
n€o,im<lo,
Let us begin with Z,. We have
pu(m)® = 4(bu + 1ru — m)’ri? (m € o4),

and

> Salm, n)w,(n) £ A > (n — m)—i-ta

n>ou n>a,
S A(by + 70 — m)2e
Making use of the inequalities
(Ou + 7u — m)* 2 = A(m + 1) (m € o),
(m+1) = Ar, (m € ay),
we obtain

Sy A Y m)im + 1) 2w, (m).

mEo'“

Exactly the same argument shows that

Ss = A 2 ()20 + 1), (n).

nEa”

It remains to treat X;. Since
pu(R)f (1) — pu(m)f~(m) = [{~(n) — f~(m)]pu() -+ f~(m) [pu(n) — pu(m)]

and since 0 Zp,(n) =1, we have

52 2 [T = [ m)]PSalm, m)w,(m)w,(n)

n,mEayu;n>m

+2 2 T ou(n) — pu(m)]2Sa(m, n)w,(m)w,(n).

n,mEoyin>m

We assert that

butry
2 o) = pu(m)12Su(m, m)wn(n) £ A(m + D7 (m Ea,).
n=m+1
To verify this note that
pu(n) — pu(m) = — (n — m)(n + m — 2b,)r;2,
| pu(n) — pu(m) | S A(n — m)rit (n, m €ay).
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It follows that

butry butry
2 () = pum)2Sa(m, man(n) S Ari* 3 (n — m)i~e,
n=m+1 n=m+1
S Ar?u + 1w — m)P
S A@m + 1)

as desired. Thus

2 ST m)eu(n) = pu(m)]2Sa(m, m)w,(n)w,(m)

n,mEouin>m

< A Y o m)m + 1)2w,(m).

m€Eay

Combining our results we have shown that

WoulB = X [ 0) — £ (m)]2Sulm, n)w,(n)w,(m)

n,m€Eoyuin>m

+ 4 X [ m)m + 1), (m).

meEay
Since no integer belongs to more than three sets g, we see that

Z Noal B <4 T [1~(0) — 17m)2Sulm, m)es,(n)eos(om)

n>m

+ 4 2 T (m)m + 1)"2w,(m).
Applying Theorems 3c and 4a we have proved our desired result.
Let S, be the set of integers 2+ 1<k <2#, u=2,3, - - -.
LEMMA 5b. If 0= <1/2 and if n,&S, then
> —2a » 2
X 2 [ m = + 1] wm) £ A(@Relf]
pu=2 mESy
By Theorem 4a
2 —2a v 2
2 oulm) 7m) [ = ma| -F 1] () < AMG[E]

meEay
For m&S, p.(m)=A4 and thus

X | m = m| + 1]20,0m)
mes <4 Y pm)f~m?[|m — n.| + 1]7,(m).

meaoy

These two inequalities together imply our desired result.



1959} QUADRATIC NORMS AND ULTRASPHERICAL POLYNOMIALS 309

DEeFINITION. T'= {t(n)} (0<% < ) is said to belong to class M(C) if

lm)| =C (n=0,1,---);
2"gjllz(le)—-z(k—l)léc (n=0,1,---).
THEOREM Sc. If 0Sa<1/2 and if
1 1@ ~ 3 S W, 2) [E Mo
2. T = {to(n)}‘: belongs to M(C),
3. /) ~ 2 0o W0, 2,
then
RNo.olTf] £ A(0)CRo ).
We set

8u(x) = 22 [T (m)i(m)w,(m)W,(n, 2).

n€Syu

Let us begin by supposing that ¢(0) =¢(1) =0; this restriction is unimportant
and is made only for the sake of convenience. Let

Fu(x) = 2 8,(2).

=2
It will be sufficient to show that

Ro.olFu] £ ACRs.o[1]
where A is independent of M. We have
v 2 1 2
%O,a[FﬁI] = FM(x) sa(x)dQ.,(x),
-1
and since

f P (@) u0)d0) = 3 [ 84 5a@)d0, ()

p=2¢ —1
1

+ X 8u(2)8,(2) 5a(1)d 0, (x),

Npu=2iAm#p vV —1

it is sufficient to show that
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o

0 S [ sen@smine| s acw.,

TR HTN 1
and
© 1
) S 8 sa@d(x) £ ACRG[1]
=2 -1

By Theorem 2b and the inequality |ab| = (a?+b?) /2 we have

Iy =f 8, (x)0n(x)s2(2)d 2 (x)

1

= 2 [mf~ () — tm)f~(m) ]2Salm, m)e(n)w,(m),

nESuimE Sy
< 2C? %‘, f(n)%w,(n) Zs Sa(m, n)w,(m) + 2C? ZS 7 (m) %, (m) Es Sa(m, n)w,(n).
neSy meS, meS) nESy
Thus

0

Y Lol SAC S S e Y X Sdm nen).

BoA=2; u%N p=2 nESy A=2; s p mESk
Now, as is easily verified,
> > Salm, W), (m) £ A[|n — 2671 4 1]+ A[| 0 — 24| 4 1]-2e
A=2; %y mES)

so that

0

2 Lol =402 X0 - 27 ] (204 1 - ]

BoA=2;u\ u=2 n€ESy

so that using Lemma 5b (1) is seen to be valid.
Let us next consider

1
f ay(x)‘lsa(x)dﬂ,.(x) =~ g'no.ar[sn]2~
-1
For u fixed we set

P x) = 3 b)) () W, 2) (n € o).

bu—ru

It follows from Theorem 4b that

RNoalp(n, 2)] £ ANo.o[El].
If u(n) =t(n)/ps(n), then
8u(2) = 22 u(m)[p(n, x) = p(n — 1, x)].

neSy
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Summing by parts this becomes

8u(x) = 2 p(n, ®)[u(n) — u(n + D] + u(2)p(2* — 1, x)

nESy

— w2 Np(271 = 1, %),

from which using Theorem 4b it follows that

m@méA%Am{Elwwﬂm+nl+wwﬂ+|mwﬁn

nE€aoy
Now it is easily verified that

> |um) —utn+ 0| + |u@)| + |w@]| = 4C

nE€oy

and thus

No.a[d] < ACH,L[E,].

Squaring and summing over u we see, using Lemma 5a, that (2) holds.

6. Multiplier transformations continued. Let p(3, ) stand for the propo-
sition that if 7€ M(C) then N;, [Tf] < ACN} . [f] where 4 depends only upon
a, 8 and of course ». Theorem 5c shows that $(0, @) is valid for 0<a<1/2.
In this section we shall show that (8, @) is valid for (—1/2 <8, «<1/2). The
following general principles are easily established, see [4].

i. If p(B, a) is valid so is p(e, B).

ii. If p(B, @) is valid so is p(—8, —a).

iii. If p(B1, au) and p(Bs, as) are valid so is p(B8, &) where 8=min(Bi, B2),
a=min(a, az).

Using these it is easily shown that p(«, 8) is valid if —1/2 <e,8<1/2 and
if in addition ¢=0. To remove this restriction we require an additional
argument.

LEMMA 6a. If —1/2<B=20=2a<1/2,if TEM(C), and if
F(x) = (1 = )T[f(x)] = T[(1 — 2)/(x)],
then
RNa.olF] < ACR.[S].

The familiar recurrence formula for ultraspherical polynomials, see [2, vol.
2, p. 175], implies that

(I =)W, (n,2) = + [(2v + n)/2(n + »)[[W.(n, 2) — W.(n + 1, 2)]
+ [n/2(n + »)][W.(n, ) — W,(n — 1, x)].
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Supposing, as we may, that only finitely many f (%) are not zero we find,
after a short computation, that F(x) = Fi(x) + Fo(x) where

0

Fy(x) = E) 2—(~_—l_*3fA(n — D[n) = tln = D], (m) W, (n, ),
F > 2 1) oo, () W,
o(x) = 2 2t )f (n + Dl(n) — t(n + 1) ], (n) W, (n, %).
Let g(x) EN” 4o and let g (n) be defined as usual. We have
f_iFl(x)g(x)dx = é 2n 1+ )fA(n — g~ [in) — tin — V]w,(n),
[ s

A X frrm=0 g | tn) =t — 1) (@m) w(n — )12

p=0 n€Sy
If f*(u)=Lub. [f~(n—-1)]| w(r—1)"2 for nE€S,, and

g*(w) =lub. |g~(n)| wn)?
for n€S,, then

[ 1] F(@)g)z| 5 4 Zf*(#)g*(n) % [tn) = ttn = 1))
< ACS PFWetw
0 1/2 © 1/2
gAc[ E_jf*(mz] [ > g*w]

< ACKs.o[f1N 5.0[g]

by Lemma 5b. Since this holds for every gEN” 4, it implies that N[ Fi]
SACR; . [f]. Similarly we can show that Njo[F.]<ACN;.[f], and our
lemma is established.

Using this we can now show that if —1/2<B=20=2a<1/2 then p(B, ) is
valid. We have

No.o[TF] £ ANo.o[Tf) + ANs0[(1 — 2)T7).
Since (0, @) is valid N5 [Tf] £ AN, [f] = ACN;.[f] If F(x) is defined

as above then
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Nool(1 — ) Tf] = Roo T{(1 = D))} + F@)]
= Rpo[T{(1 = Df@)}] + Roo[F ).
By »(8, 0),

ool T{ (1 — D)f(@)}] = ACRs.0[(1 — 2)f ()],
ACRg o [f(x)).

IA

Lemma 6a implies that
Nso[F(x)] = ACHG[f] = ACK.[S].
Combining these results we have our desired‘ result.
THEOREM 6a. p(a, B) s valid for —1/2<a, 3<1/2.

This follows from the above.

The restriction —1/2 <a, 8<1/2 is essential in Theorem 6a and the result
is not otherwise true. See in this connection the discussion at the end of §6
of [4].

An application of Theorem 6a to the theory of fractional integration is
described in [6]. Proofs for the special case »=1/2 are given in [4]. The
modifications needed to adapt the proof to the case of general » are slight.
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