Polynomials of best approximation on a real finite point set. I
HTML articles powered by AMS MathViewer
- by T. S. Motzkin and J. L. Walsh
- Trans. Amer. Math. Soc. 91 (1959), 231-245
- DOI: https://doi.org/10.1090/S0002-9947-1959-0108673-9
- PDF | Request permission
References
- Michael Fekete, On the structure of extremal polynomials, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 95β103. MR 41977, DOI 10.1073/pnas.37.2.95
- Michael Fekete, On the structure of polynomials of least deviation, Bull. Res. Council Israel. Sect. A 5 (1955), 11β19. MR 74559
- T. S. Motzkin and J. L. Walsh, On the derivative of a polynomial and Chebyshev approximation, Proc. Amer. Math. Soc. 4 (1953), 76β87. MR 60640, DOI 10.1090/S0002-9939-1953-0060640-X
- T. S. Motzkin and J. L. Walsh, Least $p$th power polynomials on a real finite point set, Trans. Amer. Math. Soc. 78 (1955), 67β81. MR 66492, DOI 10.1090/S0002-9947-1955-0066492-2
- T. S. Motzkin and J. L. Walsh, Least $p$th power polynomials on a finite point set, Trans. Amer. Math. Soc. 83 (1956), 371β396. MR 81991, DOI 10.1090/S0002-9947-1956-0081991-6
- T. S. Motzkin and J. L. Walsh, Underpolynomials and infrapolynomials, Illinois J. Math. 1 (1957), 406β426. MR 89267
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 91 (1959), 231-245
- MSC: Primary 41.00
- DOI: https://doi.org/10.1090/S0002-9947-1959-0108673-9
- MathSciNet review: 0108673