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1. Introduction. The arithmetic solution of self-adjoint elliptic difference

equations, associated with differential equations of the form

(A) 2«- V-(fl7«) = S,       2(i)H,        D(x) > 0,       S = S(x),

in general plane regions and with respect to linear boundary conditions, is a

classical problem of numerical analysis. Many such boundary value problems

have been solved successfully on high-speed computing machines, using the

(iterative) Young-Frankel "successive overrelaxation" (SOR) method as

defined in [l] and [2], and variants thereof ("line" and "block" overrelaxa-

tion). For this method, estimates of the rate of convergence and the "optimum

relaxation factor" can both be rigorously extended from the special case of

— \72u = S in a rectangle, and Dirichlet-type boundary conditions, to the

general case.

Recently, two variants [3; 4] of a new "implicit alternating direction"

(IAD) method have been proved to converge much more rapidly, in the

special case just mentioned, than the successive overrelaxation method and

its variants. This fact has led to much speculation regarding the relative

rates of convergence of SOR and IAD methods for more general elliptic

boundary value problems.  In   [3, p. 41 ], success was reported in solving

— S/2u = S for "several examples involving more complex regions and less

simple boundary conditions," but no theoretical analysis was given of the

convergence rate of the "Peaceman-Rachford" process used in these examples.

In [4, p. 421 ], the "Douglas-Rachford" process was asserted to be stable

(i.e., convergent) for — V2w = S and Dirichlet-type boundary conditions in

general plane regions, but again the cases of variable D, S?^0, and mixed

boundary conditions were not covered.

Our main result below (Theorem 3) is that the convergence estimates

given in [3] and [4] are applicable to the modified Helmholtz equation

c2u — V2m = ,S in a rectangle with sides parallel to the axes, with the boundary

condition du/dn+ku = 0, £2:0, and essentially to no other case. In dramatic

contrast to the situation as regards SOR methods, the analysis of the rec-

tangular case, via discrete Fourier analysis of eigenfunctions, gives no clue

as to the general self-adjoint case.

Nevertheless, IAD methods work well for many other cases of great

interest. We present in §§8-9 also a few positive results, giving partial

theoretical justification for this success.
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2. The matrices H, V, 2. Though our analysis generalizes [3] and [4],

by allowing D to be variable and S nonzero, it will also be limited to 5-point

difference approximations to the expression — V • D( \/u) in (A), on a square(')

mesh of side h. Thus, such approximations can be resolved into two 3-point

difference operators H and V, representing

- h2d(Ddu/dx)/dx and - h2d(Ddu/dy)/dy,

respectively, and given, at interior points, by

(1) [uH](x, y) = - a(x, y)u(x + h, y) + 2b{x, y)u(x, y) - c(x, y)u(x - h, y),

(1')   [wF](x, y) = — a(x, y)u(x, y + h) + 2/3(x, y)u(x, y) — y(x, y)u{x, y — h).

The most natural choice for a, b, c is probably

(2) a = D{x+ h/2, y),        c = D(x - h/2, y),        26 = a + c,

and similarly for a, /3, y

(2') a = D(x, y + h/2),        y = D(x, y - h/2),        2/3 = a + y.

This choice makes // and V symmetric (obviously).

However, other choices for a, b, c, a, j3, y, are reasonable, such as

(3a) a = D(x, y) + D(x + h, y)/4 - D{x - h, y)/i,

(3b) b = D(x, y) = 0= (a + e)/2 = (a + t)/2,

(3c) c = D(x, y) - D(x + h, y)/\ + D{x - h, y)/\,

etc. We mention this, because of its relevance to the question of when

HV —VH, discussed below. In the case D = l of the Laplace operator,

(3a)-(3c) and (2)-(2') are clearly both equivalent toa = c = a = y = l,b=(3 = 2.

Our analysis will be confined to the usual approximations (2)-(2'). In the

case of Dirichlet-type problems (i.e., when u(xj, y*) is given at the boundary

mesh-points), the values of u at interior mesh-points will be interpreted as

usual, as the components of an unknown "vector" u. Hence S in (A) will be

interpreted as multiplication of u by the diagonal matrix S, with ith diagonal

entry S,-, = S(Xj, yk). Inspection of (2)-(2') reveals H and V as symmetric

matrices with positive diagonal entries, and nonpositive real, diagonally

dominated(2) off-diagonal entries. Mesh-points adjacent to the boundary

yield missing off-diagonal entries (see §7), from which the strict diagonal

dominance follows. The given boundary values of u are combined as usual

with the source terms h2S(x,-, yk), to define k in the following, essentially

known result.

(1) As in [3; 4] the case of a rectangular mesh offers no additional difficulties.

(2) This means that a,-.<6 2"Z)V> |a;.j'| = Xl>'*» ( — ">•.;). strict inequality holding in at least

one case.
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Lemma 1. Dirichlet-type problems for (1) are approximately equivalent, for

small h, to vector equations of the form

(4) u(H + V + 2) = k.

Here 2 is non-negative and diagonal; H, V, i7+2 and F+2 are diagonally

dominated Stieltjes matrices; H-\- V-\-2 has a positive inverse if the domain Rh

of (interior) mesh-points is connected.

Explanation. A Stieltjes^) matrix is a positive definite symmetric ma-

trix, with nonpositive off-diagonal entries. The properties of Stieltjes matrices

have been described in various forms in the literature. Every Stieltjes matrix

H has positive diagonal entries, and is the direct sum of irreducible Stieltjes

matrices Ht. Each 77,- is then positive definite, and has a positive inverse;

see [5, p. 602].
3. Alternating direction methods. Equation (4) is clearly equivalent, for

any scalar p, to each of the two vector equations

(5) u{H + 2 + PI) = k - u(V - pi),

(5') u(V + 2 + pi) = k - u(H - pi).

Following [3, pp. 33-34], where only the case 2=0 was considered, we de-

fine, with Sheldon and Wachspress [6], the Peaceman-Rachford method as

the semi-iterative process defined by

(6) u*(H + 2 + pJ) = k - un{V - PJ),

(6')                          un+i(V + 2 + PnI) = k - u*(H - PJ),

for some sequence of positive numbers p„. Since the matrices which have to

be inverted are similar to tridiagonal(4) or Jacobi matrices under permutation

matrices, each of equations (6) and (6') can be rapidly solved by Gauss elimi-

nation. The sequence of constants pi, p2, f>z, • ■ • in (6)-(6') is intended to

be chosen so as to make convergence of the un rapid.

If U is the unique solution of (4), then the error vector En = un—U is

multiplied through the performance of (6)-(6') by the matrix

(6*) Tp = (V - PI)(H + 2 + piy^H - PI)(V + 2 + pl)~\        p = Pn.

Sheldon and Wachspress [6], also tried a variant of the preceding process,

defined by

(7) u*(H + 2/2 + pJ) =k- un(V + 2/2 - PJ),

(70_u„+1(F + 2/2 + P„7) = k - u*(H + 2/2 - p„7).

(3) Such matrices were originally considered by T. J. Stieltjes, Acta Math. vol. 9 (1887)

pp. 385-400.
(4) This observation was first applied by Crank and Nicolson, Proc. Cambridge Philos.

Soc. vol. 43 (1947) pp. 50-67, to solve the heat equation in one space dimension. It is used

also in line and block overrelaxation.
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The error reduction is then expressed by

S, = (7, - P/)(ff, + p/)-l(Hi - p/)(7i + PI)-\

V1=V+ 2/2,        Hi = H + 2/2.

Finally, Douglas and Rachford have proposed a third variant, defined by

(6) and

(8) un+1{V + 2 + pnI) = un(V+ 2) + A.U,.*;

see [4, p. 422, (2.3)]. The error reduction at the nth iteration then cor-

responds (for p=pn) to multiplication by the matrix

U„ = {(7 + 2)(ff + 2) + p2 + p2/} (J? + 2 + p/)-i(7 + 2 + pi)'1.

If p=pi =P2 = P3= • • • is^ixed, the rate of convergence of each of the three

processes just defined is determined by the spectral radius^) of the appropri-

ate matrix S„, Tp or l/p.

4. Permutable case. The analysis of [3] and [4] covered only the case

HV= VII, 2=0 of the Dirichlet problem in a (MhXNh)-rectangle. We shall

now see how far it can be extended.

It is almost obvious that the analysis can be extended to any case of

permutable operators—i.e., to

(9) HV = VH,    T #2' = 277,    and    72 = 27.

By a classic theorem of Frobenius, (9) is equivalent to a common basis of

(real, orthogonal) eigenvectors for the operators H, V, and 2; it is also equiv-

alent to the symmetry of HV, HS and VS.

In the case of the rectangle 0gx|o, O^y^b, with Dirichlet-type bound-

ary conditions, the functions sin (mwx/a) sin (niry/b) obviously form a

basis of eigenfunctions for the modified Helmholtz equation V2m = (2/D)m,

with 2 and D constant. Hence (9) holds in this case, with symmetric HV,

H2, and 72.
If commutativity (9) is assumed, estimates of the convergence rates of

the schemes described above can be made easily. If ||e|| = (2£2)1/2 is the

Euclidean length of a vector E, we can define the Euclidean norm of a matrix

T as sup (||Er||/||2?||) for nonzero E. If (9) holds, all rational functions of

II, V and 2 are symmetric, and so the Euclidean norms of S„, Tp and Up

equal their respective spectral radii. Further, let «i, • • • , er be a basis of

common (orthogonal) eigenvectors for //, 7 and 2; let ikH = Gktk, €kV = Tk(k,

and e*2 =Vkfk. Then, under (6*), e* is multiplied by \kn, where

.      . I <Tk  —  Pn Tk   —  Pn

(10) |X*n|=    -n-   "
_ (Tk  +   Pn  +   "1 \    In   +   pn  +   Vk

(6) The spectral radius (or norm) of a matrix is the maximum of the moduli of its eigen-

values. For the relation to convergence, see [l, p. 94].
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Similar formulas hold for Sp and Up. Note that, in (10), the Vk decrease the

Xkn, a similar result holds for Up—though not for S„.

Since the o~k and Tk are all positive, it follows that the spectral radii of

all processes are less than unity for all p„>0. Further, since all matrices

involved are symmetric, the error eigenvectors are orthogonal, and the spec-

tral radius is identical with the ordinary Euclidean norm. Considering the

cumulative effect on the e*, we thus conclude

Theorem 1. If (9) holds, then the error vector En after N application of the

Peaceman-Rachford process (6)-(6') satisfies

(id iiE,ii/ii^NsUPn^.T-^.
*       n-l   ffk + Pn   Tk + Pn

Similarly, after N applications of (6) and (8)

d2) ii E.ii/11 EoN suP ii   ;*T* + p;
*       n=l    {(Tk +  Pn)(jk +  Pn)

Remark. The scheme (7)-(7') while appearing to be less efficient than

(6)-(6'), is equally efficient in the permutable case.

5. Nonpermutable case. Young [l] has shown that the convergence esti-

mates obtained, as in [2], for the simple case of the Dirichlet problem for the

rectangle, are applicable to the general problem described in §§1-2, if sys-

tematic overrelaxation (SOR) is used. We shall now show that the situation

with IAD methods is entirely different. Essentially, the modified Helmholtz

equation in a rectangle is the only case to which the estimates of §4 can be

applied—at least with the difference approximation (2)-(2').

Lemma 1. The relation HV= VH implies

D(x + h/2, y) = D(x + h/2, y + h) and
(13)

D(x, y + h/2) = D(x+h,y + h/2),

whenever (x, y), (x+h, y), (x+h, y+h), and (x, y+h) are all interior points of

Rh.

Proof. By direct comparison of the entries of HV and VH, (in the notation

of Fig. 1), the equality HV= VH implies

(14) DXD2 = D3Dt,    and    DxDk = D2D3.

By hypothesis, all 7>,'s are positive; hence, we can divide the two equations

(12) to get Di/Di = Di/Dt, or D\ = D\. Since 7>2 and 7>4 are positive, it follows
that 7)2 = 7)4.

Similarly Dx=Dz, which proves (11).
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(*, y + h)                          (x + //, y + h)
O-*-(»

2: a :: Dt

I-*-i
(*. y) Di (* + *» jO

Fig. 1

Lemma 2. If HV= VH, and 3 mesh-points of a square of side h are interior

mesh-points of Rh, then so is the fourth.

Proof. For interior mesh points, // and 7 are defined by (l)-(l') and

(2)-(2'), with a, b, c, a, /3, y all positive. Now suppose that (x, y+h), (x+h,

y+h), and (x+h, y) are interior mesh-points of Rh, but that (x, y) is a bound-

ary mesh-point. Then

[mZ77](x, y + h) = ayu[x + h, y) + • • • j

where the dotted terms involve no contribution from u{x-\-h, y). On the other

hand, [uVH](x, y + h) has no contribution from u(x+h, y) whatsoever. Since

«7>0, this contradicts the hypothesis HV= VH. Similar arguments, involv-

ing aa, ca, and cy, take care of the remaining three cases.

Corollary. The relation HV= VH implies that Rh is {if connected) a

rectangle, with sides parallel to the coordinate axes(6).

Proof. By induction, it is easy to show that any connected domain Rk

with the "fourth mesh-point closure" property of Lemma 2, is a rectangle of

the type specified.

Theorem 2. The relation HV= VH holds in Rh if and only if Rh is a

rectangle and

D{x + h/2, y) = /(* + h/2)    and    D(x, y + h/2) = g(y + h/2).

Proof. If HV= VH, then Rh is a rectangle by the preceding corollary.

(6) This fact seems to have been overlooked in the discussion of nonrectangular domains

in [4, p. 431, Equation (7.5)]. The statement "As A and B commute ..." of [8, p. 410] is also

incorrect.
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Hence D(x+h/2, y) is independent of y by repeated application of the first

identity of (13). Similarly, D(x, y+h/2) is independent of x.

The converse now follows by direct calculation (see [7]).

Consideration of the relations 2i7 = i72 and 2F=F2 leads to similar

conclusions. We can prove

Lemma 3. If Rn is connected, then 277 = i72 and 2 7= VE if and only if 2

has the same value at all mesh-points.

Proof. Letting 2* denote the ith diagonal entry of 2, and h^ the (i, j)-

entry of II, clearly 277 = 772 if and only if 2,-Ay = A,y2,- for all i, j, whence

2, = 2y if hij9^0. By the transitivity of equality, this is the condition that

2(x, y) be constant on all interior mesh-points of a connected horizontal row.

—Similarly, 2F= V2 if and only if 2(x, y) is constant on the mesh-points

of a connected column. The conclusion is now obvious.

6. Applications. The application of the preceding results to the implicit

alternating direction methods for solving Dirichlet-type elliptic difference

equations is quite straightforward. We first consider limiting conditions for

the permutability of H, V, and 2 as A I 0. To deduce these, we remark the

following.

Lemma 4. Let D(x, y) be any piecewise continuous function, defined on a

connected domain R. Then either D(x, y) is constant or, for all sufficiently smad

h>0, either the relation D(x+h/2, y) =f(x+h/2) or D(x, y + h/2) =g(y+h/2)

fails on the interior mesh-points of Ru.

For any two points in the same domain of continuity, we could otherwise

find a sequence of hn I 0, and corresponding horizontal-vertical paths having

a fixed number of corner jumps of length hn, such that D(x, y) was constant

on the straight segments—and hence changed by any arbitrarily small total

amount. Therefore D(x, y) would have to be piecewise constant. Finally,

it is easy to show that a nonzero jump in D(x, y) between adjacent regions of

constancy, must violate one of the two relations (14).

Combining the preceding lemma with Theorem 2, we obtain

Theorem 3. If D(x, y) is piecewise continuous, then HV^ VII for all

sufficiently small h, in any connected domain R, except in the caseD(x, y) = const.

of D V2w— Hu+S=Q in a rectangle.

Combining this with Lemma 4, we get the

Corollary. Except in the case of the Helmholtz equation

2 2
(15) V2m — —u + S = 0, ——const.,

D D

in a rectangle, for all sufficiently small h we must have either IIV^ VH, 27//

7^/72, or 2 Vt* V2i, in all Dirichlet-type problems.
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Not only does permutability fail in the general case just described, but

complex eigenvalues commonly occur for (15) in nonrectangular regions—

as has been shown by Dr. Young(7) at the Ramo-Wooldridge Corp. Hence the

convergence estimates of [3] are essentially limited to the case (15).

Similar discussions apply to the Sheldon-Wachspress scheme (7)-(7') and

the Douglas-Rachford process (6)-(8')- For sufficiently small h, the con-

vergence estimates of [4] are limited to the case (15), contrary to the asser-

tion made in [4].

7. Mixed boundary conditions. In §§4-6, we have treated only the case of

given boundary values (i.e., Dirichlet-type problems). However, mixed

boundary conditions, of the type

(16) du/dn + d(x, y)u = 5(x, y), d > 0

are also important. Thus, if 5(x, y) =0, (14) expresses the usual "extrapolated

boundary" condition for the "extrapolation length" d.

r

r(x + It, y)-•

VI  1   I  171
"S^-' / *^4——1—r {x<y -/;)

Fig. 2 Fig. 3

To treat such mixed boundary conditions, we approximate the region R

with boundary T, over which (1) and (16) are defined in the continuous prob-

lem, by sets Rh and Th of "interior" and "boundary" mesh-points, as in Fig. 2.

The values of u at all mesh-points of Rh and Th must be taken as unknowns

with mixed boundary conditions—whereas only the values in Rh are unknown

in Dirichlet-type problems. Relative to this discretization, and the approxi-

mation (2)-(2'), we adopt a slight modification of the usual(8) approximation

to (16) on Th. Thus we take for the case depicted(9) in Fig. 3,

(7) The results of Dr. Young will be reported in a later joint paper. Mr. G. Bilodeau of the

Westinghouse Corp. had already verified the possibility of HV^ VH in December, 1956.

(8) L. Fox, Quarterly of Applied Math. vol. 2 (1944) pp. 251-257; E. Batschelet, Z. Angew.
Math. Phys. vol. 3 (1952) pp. 165-193; L. Collatz, Numerische Behandlung von Differenlial-

gleichungen, Springer, Berlin, 2d ed., 1955.
(•) The other cases can also be treated in a similar manner.
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[uH]{x, y) = u(x, y)[D(x + h/2, y) + hd(x, y)D(x, y)]

- u(x + h, y)D(x + h/2, y),

[uV](x, y) = u(x, y)[D(x, y - h/2) + hd(x, y)D(x, y)]

— u(x, y — h)D(x, y — h/2).

With reference to (2)-(2'), the matrices H and 7 so defined are symmetric,

with positive diagonal elements, and nonpositive off-diagonal elements. Be-

cause h and d(x, y) are positive, the off-diagonal elements are diagonally

dominated, and thus H, V, H+Hi, and 7+2 are tridiagonal Stieltjes ma-

trices. We further observe that the matrices H and 7, defined by the mixed

boundary conditions (17)—(17'), have their off-diagonal entries determined

in the same way as the off-diagonal entries of the matrices H and 7 of (2)-(2').

Because of this, Lemma 1 applies to the case of mixed boundary conditions.

The analog of Lemma 2 is

Lemma 5. If HV= VH, and 3 mesh-points of a square of side h are mesh-

points for unknowns, then so is the fourth.

It is easily seen that the proof of Lemma 2 applies without change to

Lemma 5. It thus results that the corollary to Lemma 2, as well as Theorem

2, and Lemma 3, remain valid for the boundary conditions of (16).

Lemma 6. If HV= VH, and Rh is connected, then d(x, y)D(x, y) = const, at

all mesh-points.

Proof. Using Fig. 3, and the definitions of (17)-(17')> we have:

[uHV](x, y + h) = - /J4(Z>3 + hd(x, y + h)D(x, y + h))u(x, y) + ■ ■ ■ ,

[uVH](x, y+h) = - D^D, + hd(x, y)D(x, y))u(x, y) + • • • .

Since the coefficients of u(x, y) must be equal, assuming HV= VH, then we

conclude that

(18) d(x, y + h)D(x, y + h) = d(x, y)D(x, y),

since D\=Ds by Lemma 1. Since this is true for all adjacent pairs of mesh-

points, and since Rh is connected, then d(x, y)D(x, y) is constant at all mesh-

points.

Combining the above lemmas, we obtain

Theorem 4. Subject to the boundary conditions (16), if D(x, y) is piecewise

continuous, then, except in the case D(x, y) =const., d(x, y) =const. of D V2m

—2m+5 = 0 in a rectangle, HV^VH for all sufficiently small h, in any con-

nected domain R.

8. Spectra of Sp, T„, Up. The preceding negative results show that avail-

able comparisons of the rates of convergence for SOR and IAD methods
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([3, p. 30] and [4, p. 436]), which depend strongly on the reality of the eigen-

values of the matrices involved, must be essentially modified for nonrectan-

gular domains. Nevertheless, indications are that IAD can be made to con-

verge more rapidly for most problems. Even if just one p is used, the com-

parison is surprisingly favorable, as we now show(10).

Theorem 5. If p>0, and 2 is constant, then the spectral radius of Tp is

less than one. In any case, the spectral radius of Sp is less than one.

Proof. We use the fact that 77, V, etc. are symmetric and positive definite.

Defining

Tp = (V + pi + 2)-17/P(F + P7 + 2),

(20)
= [(V + PI+ 2)-'(p7 - V)][(H + PI+ 2)"Kp7 - H)],

we see that T„, which has the same spectral radius as Tp, is the product of

two transformations Vp and Hp defined by symmetric matrices, each of

which has Euclidean norm less than unity if 2 is a constant, by the formulas

of §4. Hence, so does their product T„, whence Tp (and thus Tp) have spectral

radii less than unity; HV= VH need not be assumed.

As regards Sp, we need only repeat the above argument, replacing 77 by

77+2/2, V by F+2/2, and 2 by 0.

Theorem 6. If p>0, and 2=0, then the spectrum of Up lies in the circle

|X —1/2j <l/2.

Proof. Clearly, UP = (I+C„)/2, where

(21) dP = (pi - V)(PI - H)(PI + ff)-Hp7 + V)~\

Also, Z7P is similar to

(21') tJP = [(PI + V)~KpI - V))[(pl - H)(PI + II)-1] = fp,

since the two terms in the second square bracket are permutable. The con-

clusion follows, and shows the sharper

Corollary(u). 7/2=0, the eigenvalues Xk of Up are obtained from those

Hk of Tp, by the transformation Xk = (1 +fik)/2.

When HV^VH (e.g., for —V2u = S in nonrectangular domains), we

cannot even prove that all products SPSP> (p, p'>0) have spectral radii less

than one. However, under the hypotheses of Theorem 5, if pi ^p2^ • • • ^pn

and (pi— p„) does not exceed any eigenvalue of V in magnitude, then we can

prove that SPl • • • 5Pn has spectral radius less than one.

(10) The proof of Theorem 5 is essentially due to Sheldon and Wachspress [6].

(u) This has been observed, when HV= VH, by D. R. Peaceman (oral communication).
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9. Other positive results. For the Stieltjes matrices H and 7, we now

define

(22) A0 = max {*//, »#}.
i

Thus, for the Poisson equation — \/2u = S in the plane, using (2)-(2'),

evidently A0 = 2.

Theorem 7. 7/p>A0, then T„ is a non-negative matrix.

Proof. Since H and 7 are Stieltjes matrices, then for any p>0,

(iJ+pJ+2)-1 and (7+pJ+2)_1 are non-negative matrices. By definition,

for p>A0, both (—H+pI) and (—V+pI) are non-negative matrices, with

positive diagonal entries. It is therefore clear from (6*) that Tp is non-

negative.

A non-negative matrix 7" is primitive [5, p. 606], if and only if some

power of T is positive. It is also known(12) that any non-negative irreducible

matrix with positive diagonal entries is primitive. The factors of (6*) all

have positive diagonal entries if p>A0. If the domain Rh consisting of interior

mesh-points is connected, so that A =H+V is irreducible ("indecomposable"

[5, p. 598]), it follows that Tp is primitive. As a special case, there follows the

Corollary. For — \J2u = Sin a convex plane domain, if p > 2, Tpis a posi-

tive matrix.

In the preceding theorem, p>A0 corresponds to under relaxation—i.e., to

co= <1 in the sense of [l]. For, if A is any irreducible Stieltjes matrix, and

Lu is the corresponding overrelaxation matrix, as derived in [l], then for

0<w<l, La is non-negative and primitive, as is Tp for p>2.

Again, let us define Ai by the formula

(23) Ai = max {ak, t;} > 0,
k, I

where 0* and ti are the eigenvalues of H and 7. Thus, in the case of the

Poisson equation — V2u = S in any plane domain, Ai^4 (as may be shown

using Gerschgorin's lemma).

Theorem 8. If 2 = const. and p>Ai, then all eigenvalues of Tp are real and

positive.

Proof. Let Tp be as in (20). Since 2 is const., each factor in square brack-

ets is symmetric and, for p>Ai, positive definite. Thus TP=V„HP, being

similar to the positive definite symmetric matrix VlJ2HpV1J2, has all positive

eigenvalues.

02) H. Wielandt, Math. Z. vol. 52 (1950) p. 544.
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