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Introduction. In the study of uniform approximation to a function of a

complex variable by polynomials or by bounded analytic functions, Lipschitz

conditions have proved extremely useful in relating degree of approximation

to continuity properties of the functions approximated. Parts of this theory

are analogous to the older study (S. Bernstein, D. Jackson, de la Vallee

Poussin, Montel) of approximation to real periodic functions by trigonometric

sums, where Lipschitz conditions have also proved useful. Hardy and Little-

wood [2, p. 633 ](2) first pointed out that trigonometric approximation in the

mean is likewise closely related to integrated Lipschitz conditions; proofs

of the theorems stated by Hardy and Littlewood were first published by

Quade [l]. The object of the present note is to indicate rapidly and with a

minimum of detail, that degree of approximation in the mean by polynomials

in the complex variable and by bounded analytic functions is also conveniently

investigated by use of integrated Lipschitz conditions. The investigation

leads naturally to the use also of classes of analytic functions satisfying inte-

grated Zygmund and integral asymptotic conditions.

We shall approximate functions on an analytic Jordan curve or set of

curves in the z-plane. Throughout the paper 7 denotes the unit circle, C a

single analytic Jordan curve or a finite number X of mutually exterior analytic

Jordan curves Cy, j=l, 2, • • - , X; if X = l, Ci = C. A function z = Xi(w),

w = reie, maps the closed interior of y: \w\ =1 onto the closed interior of Cy

one-to-one and conformally; w = fl,(z) denotes the function inverse to z

= Xy(-0; Cy denotes the interior of Cy together with Cy. Similarly, w = cp(z)

maps the exterior of C conformally (not necessarily one-to-one) onto | w\ > 1

so that 00 =<rj(oo); CR: \<p(z)\ =R(>1) is the image in the exterior of C ol

\w\ =R under this mapping. In this paper, the letter s will denote arc-length

measured on C, the letter p a number not less than unity, the letter k a

non-negative integer unless otherwise indicated, the letters M and L with or

without subscript constants independent of re, z and w.

A function f(z) belongs to the class Hp on y if it is analytic interior to y and

if Mp[f(rew)}={fln\f(reiB)Yd6}1'r> is bounded for 0<r<l. A function f(z)
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belongs to the class Hp on C if f[xj(w)], j = 1, 2, • • ■ , X, belongs to the class Hp

on y. Smirnoff [l, p. 341] (see also Rudin [l, pp. 46-47]) has shown that

the class HP on y is invariant under a one-to-one conformal mapping of the

interior of y onto itself. If f(z) belongs to Hp on y [or C] boundary values of

f(z) for approach "in angle" exist almost everywhere on y [or C] and f(z)

is of class Lp there.

We shall approximate functions whose ftth derivatives belong to the class

Hp on C; these derivatives are also to have certain integral moduli of con-

tinuity cop(5) or generalized integral moduli of continuity co*(5) on C. If

f{k)(z) is a function of class Hp on C, and fw(z) = Fj(s), where 5 denotes arc-

length measured on Cj, then we set

"p;(5;/(A)) = ww(5;Fy) = «p,-(8) =    max    i f   \ Fj(s + ft) - Fj(s) \>ds\   ',
o<l»|gs   \J c, )

uP,(o;f(k)) = wpj(5;Fj) = wPj(S)

=    max    -j  f   [ Fj(s + ft) + F,(s - li) - 2Fj(s) \*>ds\   ",
0<\h\&S    (J Cj )

respectively the integral modulus of continuity and the generalized integral

modulus of continuity of /(M(z) on Cy. The integral modulus of continuity

o)p(5;/<*)) =cop(8) and the generalized integral modulus of continuity w*(5 ;/(t))

= co*(5) of f-k)(z) on C are then defined to be respectively the maximum of

«„■(«) and co*(3), 1 SjSX. li wp(b) SMb", 0<a<l, or co*(b) SMb, then /<*>(*)
satisfies respectively an integrated Lipschitz condition or an integrated

Zygmund condition on C. These integral moduli have significance even if the

function f(e'e) is defined only for the real variable 6. In this case/(ei8) =F(6)

is said to belong to the Hardy and Littlewood class Lip (a, p) or the Zygmund

class Ap.
We shall deal chiefly with functions which belong to the classes H(k, a, p),

0 <a < 1, or Z(k, p) on an analytic Jordan curve C. The classes are defined as

follows. Let f(z) be analytic interior to C and let f{h)(z) be of class Hp on C. If

uP(b; fik))SMba, 0<a<l, then f(z) belongs to the class H(k, a, p) on C. If

u>*(b; f-k)) S Mb, then f(z) belongs to the class Z(k, p) on C. If k = 0, we write

/(z)=/<°>(z). If/(z) belongs to the class H(k, a, p) or Z(k, p) on C and k^l,

then/'(z) belongs respectively to H(k — 1, a, p) or Z(k — 1, p) on C; if ft^O,

the indefinite integral of f(z) belongs (Theorem C below) respectively to

H(k + i, a, p) or Z(k + 1, p) on C.
If p = oo , the function f(z) is said to belong to the class H(k, a, oo) or Z(k, °o)

if f(z) is analytic interior to C and continuous on C, if f-k)(z) = F(s) exists on

C in the one-dimensional sense, and if F(s) satisfies the respective conditions

\F(s+h)-F(s)\SM\h\», 0<a<l, or \F(s+h) + F(s-h)-2F(s)\SM\h\.
If ft = 0, the classes iF(0, a, oo) and Z(0, oo) are denoted by H(a) and Z

respectively. If k = 0, and f(ei9) is a continuous function of the real variable
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6, the function f(e'e) ==F(<0) belongs to the Hardy and Littlewood class Lip a

or the Zygmund class A if F(6) satisfies the respective conditions | F(d+h)

-7(0)| ^M|A|«, 0<o<1, or \F(d+h)+F(d-h)-2F(d)\ SM\h\.
If C consists of a finite number of mutually exterior analytic Jordan

curves, a function/(z) belongs to the class H(k, a, p), 0<a<l, or Z(k, p) on

C if f(z) belongs to the respective class H(k, a, p) or Z(k, p) on each com-

ponent of C. An analogous definition holds for the classes H(k, a, oo) and

Z(k,   CO).

For convenient reference we state as Lemma 1 certain results established

by Walsh [l, pp. 92-93], Walsh and Sewell [l, Lemma 12.1], Sewell [l,
Theorem 2.21, Lemma 8.1.7] and Western [l, Theorem 2], and as Theorem

A results of Hardy and Littlewood established by Quade [l, Theorems 1-4]

and results due to Zygmund [l, Theorem 9'].

Lemma 1. If C is an analytic Jordan curve and Pn(z) is a polynomial in

z of degree re for which Jc\Pn(z)\v\dz\ SLp, then

(1.1) | P»(_)|   S L'LR", zond;

(1.2) | P„(z)|   S L'Ln1'", zonC;

(1.3) |J |P„(_)|"|__| j   P=L'Ln;

in these inequalities L' is independent of re and z but depends on p and C; in

inequality (1.1), L' also depends on Cr. Inequality (1.1) is valid if C is a finite

number of mutually exterior analytic Jordan curves.

If C is an analytic Jordan curve containing the origin in its interior and if

Pn(z, 1/z) is a polynomial in z and 1/z of degree n for which fc\Pn(z, l/z)|p|_z|

SLP, then

(1.4) | Pn(z, 1/z) |   S L'LR", z on A,

where A is the region bounded by |<p(z)\ =R and \ Q,(z)\ = 1/R;in this inequality

L' is independent of re and z but depends on p, C and R.

Theorem A. A necessary and sufficient condition that a function F(6)

periodic of period 2ir can be uniformly approximated in the mean of order p by

trigonometric polynomials Tn(6) of respective orders n with the degree of ap-

proximation l/nk+a, 0<a^l, is that Fik)(6) belong to Lip(a, p) if 0<a<l and

to Ap if a=l.

Preliminary results. The main conclusions of the paper require several

preliminary theorems in addition to those already stated.

Lemma 2. Let the function w=f(z) analytic on y: \z\ =1 transform y onto

y': \w\ =1 one-to-one and so that f'(z) 9^0 on y. Then an annulus A containing

y is transformed conformally and one-to-one onto an annulus A' containing y'.
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If the conclusion is false, for re sufficiently large the annulus An: 1 — 1/n

<\z\ <l + l/w within which/(z) is analytic contains two distinct points an

and (3„ whose images are identical: /(«„) =/(/3„). A subsequence a„t of the

points an approaches a limt ao, necessarily on y, and a subsequence of the

points /3n4 approaches a limit /30, necessarily on y. Then if ao^p^o we have

/(«n*)=/(/3IU),/(ao)=/(/3o); if a0 = |8o we have/'(«o) =0; in any case we have

reached a conclusion contrary to the hypothesis on/(z).

Theorem B. Let the function c&(0) have period 2ir and let cp^k)(0) be of class

Lip(a, p) in 6; let 8(6X) be a transformation analytic for all 6 and one-to-one,

with Bi(B)^0, and 0(01 + 27r)=0(0i)+27r. Then dhcp[d(6x)}/d6\ is of class

Lip (a, p) in 9X.

We interpret the range — oo <0< + oo ony: z = eie. From the hypothesis

on c/>(0) it follows that there exist trigonometric polynomials of respective

degrees n, namely polynomials p„(z, 1/z) of respective degrees re in z and 1/z,

such that

(1) f | cb(-i log z) - pn(z, 1/z) \'\dz\   S L/n«+«)i>.
J  y

The functions p„(z, 1/z) then satisfy the inequality

(2) f \pn(z,l/z)\"\dz\   SLl,
J  y

and by Lemma 1, the inequality

(3) \pn(z, 1/z) |   S LiR", zinA,

where A is the annulus whose existence is asserted in Lemma 2, for the trans-

formation of y onto y'\ w = eiHm. Denote by A' the image of A under this

transformation. Then in the w-plane we may express (1) as

f | cp[e(di)] - p„(z, l/z) \p | dd/ddi | ddi s L/n«+°)»,
J  y'

which by the boundedness of l/|d0/<20i| implies

(4) f    | <t>[e($i)]   -fn(w) \"d6i  S  F3/re<*+«>*,     fn(w)   m  pn(z, 1/z),
J   y>

and we have

(5) | fn(w) |   S LiR", z in A'.

The conclusion now follows as in Theorem 8 below.

This method shows simultaneously that if c5(i)(0) is of class Ap in 0, so

also is <F</> [0(00]/^ in 0i.
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Remark. Theorem B remains essentially valid if <j>(0) is periodic with

period r^2ir and 8(dj) has corresponding properties.

Theorem C. The indefinite integral F(z) of a function of class Hp on an

analytic Jordan curve C is continuous on C and satisfies the condition o)p(8; F)

S Mb on C.

Let/(z) be a function of class 77j, on C. Then h(w) —f[x(w) ] belongs to the

class 77p on 7, and, since |x'(w)| =L if \w\ Sal, so does the function g(w)

= h(w) x'(w)- F. Riesz [l, p. 95] has proved that the indefinite integral of a

function of class 77i on 7 is continuous on 7. By Riesz's theorem, the function

G(w)=jog(w)dw is continuous on 7, where the path of integration between

0 and w lies interior to 7. Since G(w) = G[Q,(z)} = F(z)=J\J(z)dz, and _(z) is

analytic on C, the function F(z) is analytic interior to C and continuous on C.

The fact that up(5; G) SM8 on 7 follows by a lemma of Hardy and Little-

wood [2, p. 619, Lemma 10], namely that "if f(6) is the ath integral of a

function of Lv, then/(0) belongs to Lip (a, p)," 0<a^l, p^l. In considering

the function G(w)=fl°g(w)dw, the path for \w\ =1 may be taken along a

radius, or may be taken in part along an arc of 7, by the boundedness of

JI'I g(re») I dd for 0 <r S 1. Thus F(z) =f\J(z)dz may be taken along C. By the
remark following Theorem B the function F(z) satisfies the condition op(b; F)

S Mb on C.

Lemma 3. If g(z) is analytic in C, and if f(z) is of class 77(0, a, p) or Z(0,

p) on C, thenf(z)g(z) is also of class 77(0, a, p) or Z(0, p) on C.

The proof follows from simple algebraic equations and the use of Min-

kowski's inequality for integrals.

Lemma 4. If f(z) belongs to H(k, a, p) or to Z(k, p) on an analytic Jordan

curve C, then f[x(w)] = Fx(w) belongs to the corresponding class on 7; if g(w)

belongs to H\k, a, p) or to Z(k, p) on 7, then g[tt(z)] = h(z) belongs to the cor-

responding class on C.

If k = 0, the conclusion of the lemma follows from Theorem B and the

invariance of class 77p under conformal mapping. If k^l, the function

/(t_1)(z) satisfies the condition _P(S; /(4_1) ^ J75 on C, by Theorem C; if

k>,2, the functions /(,)(2)i j = k — 2, have continuous derivatives. By the

proof for k = 0, the function /(*° [x(-0] belongs to 77(0, a, p) or Z(0, p) on 7

when/(fc)(z) belongs to the corresponding class on C; by the proof of Theorem

C, the functions /(,,)[x(w)], jSk — 1, satisfy the condition wp(5; fU)[x(w)])

SM5 on 7; by hypothesis x(-0 is analytic on 7. From the equations Fx(w)

=f'(z)x'(v>),Fx"(w)=f"(z)[x'(w)]2+f'(z)x"(w), ■ ■ ■ , and Lemma 3, the first

half of the lemma follows. The second half is proved similarly.

Theorem D. If f(z) belongs to H(k, a, p) [0 <a < 1 ] or to Z(k, p) [a = 1 ] ore

7, there exist polynomials wn(z) in z of degree n such that
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/M
\f(z)-irn(z)\»\dz\   S—---

y n'k+a)p

By the method of proof of Lemma 4, from the equation dkf(z)/ddk

— zZi-iciz'fu)iz)< \z\ =li ci constants, it follows that the function f(eie)

= F(0) belongs to H(k, a, p) or Z(k, p) on y. By Theorem A, trigonometric

polynomials tn(6) of order re exist such that

r2T, , m
F(6) - tn(6) *d6 S ——■ ■

Jo M(*+«>P

Quade [l, Theorem 3] follows de la Vallee Poussin, who has shown [l, §31]

the polynomials tn(6) to exist in the form

ao       J^
tn(6) =-1-   ), dn,y(a, cos vd + b, sin vd),

2        »_i

where a, and b, are the Fourier coefficients of F(0) and dn,, are independent of

F(0) but depend on k, that is, the polynomials tn(0) are formed by applying

a particular method of summation to the Fourier sums for F(0). For z = e'e,

we have tn(d)= 2~l"-odn,yCyZ", where 2cr = a, — ibv, hence tn(B) is a polynomial

ir„(z) in z of degree re (i.e. of power series type) for which (6) holds.

Problem a. We denote by Problem a the study of the relation between

continuity properties on C and degree of approximation on C, whereas we

denote by Problem /3 the study of the relation between continuity properties

on C„ (interior to which f(z) is supposed analytic) and degree of approxima-

tion to f(z) on C. Our main results follow.

Theorem 1. Let C consist of a finite number X of mutually exterior analytic

Jordan curves Cj. If f(z) belongs to H(k, a, p) [0 <a < 1 ] or to Z(k, p) [a = 1 ] on

C, there exist polynomials ir„(z) in z of respective degrees re such that

f \f(z)-irn(z)\»\dz\   S—-— - 0<aSl.

By Lemma 4, the functions f\xi(w)\ belong to H(k, a, p) or to Z(k, p)

on y when f(z) belongs to the corresponding class on C. By Theorem D there

exist polynomials irj,n(w) in w of degree n such that

F2l|     r I Ml II

\f[xi(w)] - irj,n(w) \*d0 S —7-—> \w\   =1.
J o W(*+«)P

Let iTj,n(w)=Fj,n(z). Since xi (w) 5^0 on Cy, we have

(7) JCI^)-^Z)H^I=^-
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For some number P> 1 the curves Cy : | _y(z) | =R are analytic and mutually

exterior and each Bj-(z) is analytic in the closed interior of the corresponding

Cy . From (7), the hypothesis on/(z), and Lemma 1, we have

| Tj,n(w) |   S L'R", w on 7h, L' independent of iry,„ and n,

and hence

1 Fj,n(z) |   S L'R", z on C/.

Using the method of Curtiss [l, pp. 875-877] we approximate to Fn(z)

= Fj,n(z) by polynomials Pqn(z) of respective degrees qn which interpolate

to Fn(z) in qn + 1 equally distributed points on C and are such that

| Fn(z) - Pqn(z) |   S Mm", v < 1, z on C;

thus by (7)

C i iii M*
f(z) - Pqn(z) " dz   S—— ;

J c w(t+-)p

polynomials irn(z) defined by 7T„(z)=0, n<q, irn(z)=Pqj(z), qjSn<q(j+l),

j=l, 2, • • • , then yield the theorem.

Obviously the conclusion of Theorem 1 holds if the 7r„(z) are extremal

polynomials of respective degrees re approximating to f(z) on C in the sense

of least pth powers.

Theorem 2. Let C be an analytic Jordan curve. Let F(z) and polynomials

TTn(z) in z of respective degrees re exist such that

(8) \F(z) - wn(z) H dz\   S -1 0 < a S 1.
J c n(.k+a)p

Then F(z) is equivalent (i.e. equal a.e.) on C to a function f(z) of class H(k, a, p)

on C if 0 <a< 1 and of class Z(k, p) if a = 1. If ap>l, the function/W)(z) be-
longs to H(a—l/p), 0<a^l, on C, and we have

(9) f(z) - 7rn(z)     S ——- > zonC.
nk+a-X/p

We adapt the method of proof used by de la Vallee Poussin [l, Chapter

III] for p= oo and/(0) a periodic function of period 2n\

From (8) we obtain

/' i                           iii             M2
«+'(8)   -   JT2>"(Z) \P\  dz\     <   -  •

c'                            '   '               (2') (*+«>"

Let ay(z)=7r2''+I(z)—7T2'(z). From (10) and repeated use of Lemma 1, we

have
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O11) I   \9>   00     \dz\   =777777-7"'
J c (2>) (*+°-c)p

and from (11) and Lemma 1,

i   go Mt
02 ?-Wl  =77777-TT' 3onC-

Let ft = 0. For z interior to C and | J — z\ ^d>0, inequality (8) yields

i 1    C     I ?;0) I    i       , Mb
(13) ?,■(*)     ^ - A    ^ — -

11 2irJc    h-z| 2'rf

and by (13) and (10), the sequence {7r2>(z) } converges uniformly on any closed

set interior to C to an analytic function f(z) and in the mean on C to a func-

tion of class L". We now prove that f(z) belongs to the class Hp on C. Let

F(w), Him(w) and Qj(w) denote respectively/[x(w)], ir2*»[x(w)] and ?y[x(w)],

and let w = reie. On any closed set interior to y we have

F(w) - n2»(w) = £ Qj(w),

so that

[00 —I 00

£ &■(«")    ^ £ Mp[Qj(re")], r < 1.

Since /c|?;(z)|p|dz| =/y| Qj(w)\ p|x'(w)| |dw\ and since |x'(w)| ^F>0 on

7, from inequality (10) we obtain

UI 1/p      Af6
\Qj(w)\"\dw\^      S--

The functions Hi*>(w) and Qj(w) analytic on y are of class ifp on y, so that

with the use of (14) and (15) the inequality

Mp[F(reie)] S Mp[U^(rei6)\ + MP[F(reis) - U^(reie)\

yields
oo oo

MP[F(re<°)] S M7 + £ Jf,[&■(«")] S M7 + £ Ifpfey^**)]

^8

^ Af 7 H-, where Af 7 and M8 are independent
2ma

of r. Since F(w) is analytic interior to 7 and Afp[F(rei9)] is bounded for

0 <r < 1, F(w) is of class Hv on 7, and/(z) is of class Hp on C. Thus/(z) —7T2m(z)

is also of class Hp on C and
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/(.) -T*-(z)\p\dz\ =-—•
c' 2map

The function f(z) is equivalent on C to 7(z) since

r |7(2) -/(.)i»i_-i

g 2"-1     I   \F(z) - v-r(z)\p\dz\   +  1   \f(z) - irHz)\p\dz\     ;

compare (8).

Let k = l. Inequalities (12) and (13) imply that {7^ >'(-)} converges uni-

formly on C to a function f(z) analytic interior to C, continuous on C, equiva-

lent to F(z) on C, while {^'(z)} converges in the mean on C to a function

gi(z) of class Lp on C. Since

I [ \jZqA)-[iA)-^(t)]\dt\
I J C \ j—m J        I

= mxo\ f\ JZq'At) - ki(0 - «•(/)]" I * I }
1 J c I j'=m /

and the right member approaches zero with 1/re, we have

JZ fq,(t)dt=  (*[gi(t) - Tc'Ht)]dl
j=m J f J f

where f is a fixed point and z a variable point on C. Integration gives

/(»)-/_■) =f'gi(t)dl

and gi(z)=/'(z) almost everywhere on C. By the argument for k = 0,f'(z) is

of class 77p on C.

If &>1, inequalities (11) and (12) and repetition of the above arguments

imply the existence of/(4)(z) of class 77p on C.

If k^O, if ap>l, inequality (8) implies [Sewell, 1, Theorems 4.2.1 and

4.2.2] that/<*>(_) is of class H(a-l/p) on C and that (9) is valid.

We outline the proof that/(*'(z) belongs to Z(0, p) it a= 1. The proof that

/<*)(z) belongs to 77(0, a, p) if 0<a<l is similar.

Let z = t(s) he the equation of C. Let h be arbitrary but fixed, 0<h<l/2,

and let TV be a number such that 2NSh~1<2N+1. Let G(s)=ir2k)[r(s+h)]

+ 7T«[r(s - h)\ - 2t?)[t(.)] and Gf(s) = gf [r(s + h)] + qf[r(s - h)]
- 22,"° [t(s) ],/_:!. We write
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{ / l/tt)K* + *)] +/W)[r(5 - ft)] - 2/»>[t(*)] |p^| ' "

s{/jgw|*}'"+(s+JJ{/jc"'w|4"*
Each term on the right is not greater than L\ h\. For the first term we have

| f | G(s) \*ds} ̂ S  { Jj *™[t(s + ft) - t™[t(s)) \'ds} UP

+  {Jc\^)[r(s)]-iriik)[r(s-h)]\Pdsy'P

S L\ ft|;
for the third term,

s {fjq-k)[r(s+h)]\pdsy,p+ {fc\qr[r(s-h)]\pdsy'p

+ 2{fg\q?)M]\'d,y*
S Li2~i;

for the second term, with the use of inequality (11) when p = ft + 2, we have

{fjorwds}1''

- /.*{/<,' ^+1)[r(r+5)] ~5;<t+1)[r(r+s~h)] l"ds)llPdt

s LiV f | T(r + s) - T(r + j - ft) i #
•7 o

g F32'ft2.

Since £y°°,^+1 2-»'g2-*£2|A| and £f_! 2>ft2^Z,42Jvft2gL6| h\, the conclusion

follows.
Problem p\ The definition of the classes H(k, a, p) and Z(k, p) may be

enlarged to include the case that ft is a negative integer. A function f(z) is

said to be of class H(k, a, p) or Z(k, p) on an analytic Jordan curve C when k

is a negative integer if /[x(w) ] is respectively of class H(k, a, p) or Z(k, p) on

7. The function/(z) =f(rei0) is said to be of class H{k, a, p) on 7 when ft is a

negative integer if/(z) is analytic interior toy and Mp[f(rei6)] S Af(l— r)h+a,
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r<l. This classification is based on results of Hardy and Littlewood [2,

Theorem 3; 3, Theorem 46]: (a) A necessary and sufficient condition that a

function f(z) analytic interior to y belong to 77(0, a, p) on y, 0<a<l, is that

Mp[f'(reie)]SM(l-ry-\ r<l; (h) If Mp[f(reie)]SM(l-r)", p<0, then
Mpy,(reie)]SMi(l-r)i'-1; (c) If MP[f(reie)]SM(l-r)", p<-l, then

Mp[F(reie)] S M2(l— r)»+1, where F(z) is any indefinite integral of f(z). From

these properties and the extended definition of U(k, a, p) it follows that on y

and on C for each a and p we have a sequence of classes • • • , 77( —2, a, p),

77( —1, a, p), 77(0, a, p), 77(1, a, p), 77(2, a, p), ■ ■ ■ ; each function of a class

is the derivative of a function of the next higher class and the indefinite

integral of a function of the next lower class.

The invariance of the classes H(k, a, p) under conformal mapping of the

interior of 7 onto itself is readily proved. Let z = x(-0 =\(w — a)/(l — aw),

|X| =1, |a|<l. If k=— 1, by (a) the indefinite integral F(z) belongs to

77(0, a, p) on 7; this class is invariant under conformal mapping, so that

7"[x(w)] belongs to 77(0, a, p) on 7. Hence by (a), Mp[dF[x(rew)]/dw]

SM(l—r)~1+", r<l. Sincef[x(w)]dz/dw = dF[x(w)]/dw, and since \dz/dw\

^L>0, \w\ Sl,v/ehaveMp[f[x(reie)]]SM(l-r)-1+a,r<l. It &=-2,then

F(z) belongs to 77( —1, a, p) on 7; by the above argument P[x(w)] belongs

to 77( —1, a, p) on 7; by (a), dF[x(reie)]/dw belongs to 77( —2, a, p) on 7;

and by the argument used above, /[x(w)] belongs to 77( —2, a, p) on 7. If k

is any negative integer, repetition of the above argument gives the desired

result.

In defining the class Z(k, p) on 7 when k is any integer we first define the

class Z( — 2,p) as the class of functionsf(z) for which Mp[f(reie)] S M(l — r)_1,

r<l. We then define the class Z(k, p), k^—2, by using the class Z( — 2, p)

as fundamental; the class Z(q — 2, p), q>0, is the class of gth iterated inte-

grals of functions of class Z( — 2, p); the class Z(q — 2, p),q<0, is the class of

gth derivatives of functions of class Z( — 2, p). The new definition has a

natural basis in the results (b) and (c) above and in the following theorem,

see Zygmund [l, Theorem 13]: A necessary and sufficient condition that a

function f(z) analytic interior to 7 of be class Z(0, p) on 7 is that Mp[f"(reie)]

S M(l — r)_1, r<l. Thus for each p we have on both 7 and C a sequence of

classes • • • , Z(-3, p), Z(-2, p), Z(-l, p), Z(0, p), Z(l, p), ■ ■ ■ ; the

derivative and integral of a function of any class belong respectively to the

next lower and next higher class. The class Z(q — 2, p), g^ 2, is identical with

the class Z(k, p) previously defined for k = q — 2^0. The class Z(k, p) is

invariant under conformal mapping of the interior of 7 onto itself. The proof

is similar to the proof given above for the invariance of the class H(k, a, p)

under conformal mapping.

If C consists of a finite number of mutually exterior analytic Jordan

curves, a function/(z) belongs to the class 77(jfe, a, p) or Z(k, p) on C if f(z)

belongs to the respective class H(k, a, p) or Z(k, p) on each component of C.
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The new classification H(k, a, p) and Z(k, p) for all integers ft is especially

suited to the study of Problem /3, for it enables us to consider the relation

between degree of approximation on C and integral asymptotic conditions

on C„ as well as the relation between degree of approximation on C and

integrated Lipschitz and Zygmund conditions on Cp.

Theorem 3. Let C and Cp each consist of a finite number of mutually ex-

terior analytic Jordan curves. If for any integer k the function f(z) belongs to

H(k, a, p) [0 <a < 1 ] or to Z(k, p) [a = 1 ] on Cp, polynomials t„(z) in z of de-

gree re exist such that

i           L
f(z) — 7r„(z)     S-i z on C.

nk+apn

For ft^O, by Theorem 1, polynomials P„(z) exist such that

(16) f     \f(z)-Pn(z)\*\dz\    S-^—-
J Cp n<k+a)p

Let 7rn(z) be a polynomial in z of degree n which interpolates to/(z) in re + 1

equally distributed points z, on C. Let co„(z) = (z —zi)(z —z2) • • ■ (z — z„+i).

Then for z on C, by the use of theorems of Walsh and Sewell [l, Theorem 3.1

and 4.7], Holder's inequality, and inequality (16) we have

I f(z) - xn(z) \   S—\ i     ,rtM.-j- I dt |
2irJcp | cinW \   \t — z\

Li I  C   , ,   ,      i ) I/p L

S-\ \f(t)-Pn(t)V\dt\\ S~1—n-
pn (Jcp ) nk+apn

For ft<0, let Fy(z) denote the (any) ftth indefinite integral of f(z) in the

closed interior of the component Cf of Cp. Then Fy(z) belongs to the class

if(0, a, p) or Z(0, p) on Cf, and F(z) defined as F,(z) on Cf belongs to the

class FT(0, a, p) or Z(0, p) on Cp. Let pn(z) be a polynomial of degree re which

interpolates to F(z) in re + 1 equally distributed points on C. By Theorem 1,

polynomials Pn(z) of degree re in z exist such that

r , i i   i    Mi
(17) \F(z) - Pn(z)\"\dz\  S-

J Cp «ap

For z on C, we have

., If On(z)[F(l)   -   Pn(l)]
F(z) - pn(z) = — -—-dt.

2m J Cp u„(l)[t — z\

Differentiating —ft times with respect to z, we use a method of proof of

Walsh and Sewell [2, Theorem 7.9], Holder's inequality, and inequality (17)

to obtain
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(t) M2n~k { C   i ,   i      il 1/p

|/(Z)   -  Pn    (Z) |    S  -^^\]c    I  *W   ~   P«W H  *l|

L
S-> z on C.

p"nk+a

Theorem 3 was proved by Walsh and Sewell [2, Theorem 10.5] in the

special case 0<a<l, p = 2, and Cp the unit circle.

In the direction of a converse to Theorem 3 we state the following theorem

which has been established by Walsh and Sewell [2, p. 249]; Sewell [l, Theo-

rem 7.2]:

Theorem 3*. Let C be an analytic Jordan curve. If f(z) is defined on C,if

polynomials ir„(z) in z of degree re exist such that

r , ,i m
\f(z)-rn(z)\'\ds\     S -, 0<_^l,p>l,

J c n(k+a+l)Ppnp

then f(z) if suitably defined is analytic interior to C„ and of class H(k, a, oo)

are Cp if 0 <a < 1, and of class Z(k, oo) if a = 1. If k ̂  0, the inequality

i i Mi
\f(z)-Tn(z)\   S--

nk+a

is valid for z on C„.

We give an illustration to show that the classes H(k, a, p) may be more

useful in application to Problem |3 than the older classes H(k, a, =o). The

function/(z) = l/(p — z) is of class 77(— 1, 1/2, 2) on y„: \z\ =p, tor we have

(z = reie) with r<p

r      . ii.        r2T rdO 2wr
/(«'•) 2 \dz    = -=-;

J|,l_r Jo    P2-2rpcosd + r2      p2 - r2

this last equality follows by identification of the integral with Poisson's

integral. By Theorem 3 there exist polynomials 7r„(z) of respective degrees re

satisfying

i i L
f(z) - Tn(z)     S ——— > zony.

n~1,2p"

This is a stronger inequality than

i            L
I f(z) - x„(z) I   S-;— i z on 7,

re_1pn

which is obtained by using merely |/(re'9)| St/(p — r), r<p.

Bounded analytic functions. The technique we have used thus far applies

with suitable modifications in the study of approximation by bounded ana-
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lytic functions; compare Walsh [2].

Theorem 4. Let C be an analytic Jordan curve which together with its inte-

rior lies in a region D. Let the sequence of functions fn(z) be analytic in D and

satisfy the inequalities (ft ̂  0)

(18) |/„(z) |   S LiR", z in D, R > 1,

(19) f |f(z)-/„(z)H<*z|   S—^-> 0<aSl.
Jc n(k+a)p

Then F(z) is equivalent on C to a function f(z) of class HJJt, a, p) if 0 <a < 1,

and of class Z(k, p) if a = 1. If ap>l, we have

1/00-/„(z) |  S        *,   >        zonC.

To prove Theorem 4, we use the method of Theorem 1 to determine poly-

nomials Pqn(z) of respective degrees qn which approximate to fn(z) with

degree of approximation r", r < 1, on C, and define through Pqn(z) polynomials

irn(z) such that

r , iii       m
/(z) -*■»(*) p \dz\   S —7777!

Jc n(k+a)v

Theorem 2 applies to complete the proof.

It is worthy of note that Theorem 2 is a consequence of Theorem 4, for

if /n(z) is a polynomial of degree re in z, inequality (18) is a consequence of

(19) by Lemma 1.

Best approximation. For polynomials and bounded analytic functions of

best approximation in the sense of least pth powers we state Theorems 5

and 6.

Theorem 5. Let C be an analytic Jordan curve and letf(z) belong to H(k, a, p)

[0 <a < 1 ] or Z(k, p) [a = 1 ] ore Cp for any integer k. If q„(z) is the polynomial

in z of degree re such that p' = /c|/(z) — qn(z) | p| dz\ is least, then we have

(a) f |/W - ?»(*) |'U*|  S ——-;
Jc n(k+a)ppnp

i i M
(b) f(z) - qn(z)     S >  zonC;

ftk+a—llppn

. MR"
(c) f(z) - qn(z) |   S —— >  zonCn, 1 < R < P;

nh+apn

M
(d) \f(z) - qn(z) |   S ——- >   z on Cp, ft 2:1.

nK+a— 1
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Inequality (a) follows from Theorem 3 and the definition of g„(z); in-

equality (b) from Theorem 3 and a theorem of Jackson [2, p. 856]; inequal-

ities (c) and (d) follow from (a) and Theorem 3*.

Theorem 6. If C and D (bounded) are defined as in Theorem 4, if f(z) is of

class IIP on C, if for each M>0 the function Fm(z) is the (or a) function analytic

and of modulus not greater than M in D of best approximation to f(z) on C in

the sense that uvm = Jc\f(z) — FM(z)\p\dz\ is least, then a necessary and sufficient

condition that f(z) belong to H(k, a, p) [0<a<l] or to Z(k, p) [a=l] on C is

that pL1M~k+a) log M be bounded as M becomes infinite.

The sufficiency of the condition follows from Theorem 4. The necessity

of the condition follows from Theorem 1, for if the/„(z) are polynomials of

respective degrees re, (18) is a consequence of (19) by virtue of Lemma 1, in an

arbitrary bounded region D containing C.

Extensions. The direct theorems which we have proved under the as-

sumption that/(z) belongs to H(k, a, p), k^O, are likewise true if a is re-

placed by unity, that is, if f(k)(z) satisfies an integrated Lipschitz condition

with a= 1; theorems in the converse direction are not valid it <x = l.

Our theorems may also be extended to include approximation by poly-

nomials of degree re in z and 1/z where the function approximated need not be

analytic throughout the interior of C. We conclude by stating two results

involving such polynomials, analogous to theorems proved by Walsh [5,

Theorem l] and Walsh and Elliott [2, Theorem l].

Theorem 7. If C is an analytic Jordan curve containing the origin in its

interior, a necessary and sufficient condition that /(W(z) exist and satisfy an

integrated Lipschitz (0 <a < 1) or Zygmund (a = 1) condition of exponent p on C

is that polynomials Pn(z, 1/z) of degree ninz and 1/z exist such that

r i iii       m
\f(z)-Pn(z,l/z)\p\dz\   =-——> 0<aSl.

J q n(k+a)p

Theorem 8. If C is an analytic Jordan curve which lies in a region D and

if functions fn(z) satisfy the conditions of Theorem 4, then f(k)(z) exists on C and

satisfies there an integrated Lipschitz (0<„<1) or Zygmund (a=l) condition

of exponent p.

The converse of Theorem 8 is contained in Theorem 7 provided there

exist points exterior to the given region D both interior and exterior to C;

compare Lemma 1.
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