Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Geometry of bounded domains
HTML articles powered by AMS MathViewer

by Shoshichi Kobayashi PDF
Trans. Amer. Math. Soc. 92 (1959), 267-290 Request permission
References
  • Walter L. Baily Jr., The decomposition theorem for $V$-manifolds, Amer. J. Math. 78 (1956), 862–888. MR 100103, DOI 10.2307/2372472
  • W. L. Baily, On the imbedding of $V$-manifolds in projective space, Amer. J. Math. 79 (1957), 403–430. MR 100104, DOI 10.2307/2372689
  • S. Bergman, Ueber die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. vol. 169 (1933) pp. 1-42; vol. 172 (1935) pp. 89-128. —, Sur les fonctions orthogonales de plusieurs variables complexes, Mem. Sci. Math. Paris, no. 106, 1947. —, Sur la fonction-noyau d’un domaine . . ., ibid, no. 108, 1948.
  • Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
  • Armand Borel, Les fonctions automorphes de plusieurs variables complexes, Bull. Soc. Math. France 80 (1952), 167–182 (French). MR 55456
  • H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, Lectures on functions of a complex variable, University of Michigan Press, Ann Arbor, Mich., 1955, pp. 349–383. MR 0074058
  • E. Cartan, Sur les domaines bornĂ©s homogènes de l’espace de $n$ variables complexes, Abh. Math. Sem. Univ. Hamburg vol. 11 (1935) pp. 116-162. H. Cartan, Sur les groupes de transformations analytiques, ActualitĂ©s Sci. Ind., no. 198, 1935. —, VariĂ©tĂ©s analytiques complexes et cohomologie, Colloque sur les Fonctions de Plusieurs Variables, Bruxelles, 1953. —, Quotient d’un espace analytique par un groupe d’automorphismes, Alg. Geometry and Topology (Symposium in honor of S. Lefschetz), Princeton, 1957.
  • Hans Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38–75 (German). MR 77651, DOI 10.1007/BF01354665
  • Jun-ichi Hano, On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885–900. MR 95979, DOI 10.2307/2372440
  • ShĂ´shichi Kobayashi, Espaces Ă  connexions affines et Riemanniennes symĂ©triques, Nagoya Math. J. 9 (1955), 25–37 (French). MR 76391
  • Shoshichi Kobayashi, Theory of connections, Ann. Mat. Pura Appl. (4) 43 (1957), 119–194. MR 96276, DOI 10.1007/BF02411907
  • Shoshichi Kobayashi and Katsumi Nomizu, On automorphisms of a Kählerian structure, Nagoya Math. J. 11 (1957), 115–124. MR 97536
  • K. Kodaira and D. C. Spencer, Groups of complex line bundles over compact Kähler varieties, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 868–872. MR 63121, DOI 10.1073/pnas.39.8.868
  • K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28–48. MR 68871, DOI 10.2307/1969701
  • J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canadian J. Math. 7 (1955), 562–576 (French). MR 77879, DOI 10.4153/CJM-1955-061-3
  • AndrĂ© Lichnerowicz, Sur les groupes d’automorphismes de certaines variĂ©tĂ©s kähleriennes, C. R. Acad. Sci. Paris 239 (1954), 1344–1346 (French). MR 74065
  • Friedrich Sommer and Johannes Mehring, Kernfunktion und HĂĽllenbildung in der Funktionentheorie mehrerer Veränderlichen, Math. Ann. 131 (1956), 1–16 (German). MR 77650, DOI 10.1007/BF01354662
  • S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), no. 2, 400–416. MR 1503467, DOI 10.2307/1968928
  • Kiiti Morita, On the kernel functions for symmetric domains, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 5 (1956), 190–212. MR 88567
  • I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. MR 79769, DOI 10.1073/pnas.42.6.359
  • J. A. Schouten and K. Yano, On pseudo-Kählerian spaces admitting a continuous group of motions, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 565–570. MR 0074066
  • Carl L. Siegel, Analytic Functions of Several Complex Variables, Institute for Advanced Study (IAS), Princeton, N.J., 1950. Notes by P. T. Bateman. MR 0034847
  • G. Washnitzer, A Dirichlet principle for analytic functions of several complex variables, Ann. of Math. (2) 61 (1955), 190–195. MR 67208, DOI 10.2307/1969628
  • K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.00
  • Retrieve articles in all journals with MSC: 57.00
Additional Information
  • © Copyright 1959 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 92 (1959), 267-290
  • MSC: Primary 57.00
  • DOI: https://doi.org/10.1090/S0002-9947-1959-0112162-5
  • MathSciNet review: 0112162