On a decompostion theorem of Federer
HTML articles powered by AMS MathViewer
- by Earl J. Mickle
- Trans. Amer. Math. Soc. 92 (1959), 322-335
- DOI: https://doi.org/10.1090/S0002-9947-1959-0112947-5
- PDF | Request permission
References
- Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438β456. MR 10611, DOI 10.1090/S0002-9947-1944-0010611-3
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114β192. MR 22594, DOI 10.1090/S0002-9947-1947-0022594-3
- Earl J. Mickle, On the extension of a transformation, Bull. Amer. Math. Soc. 55 (1949), 160β164. MR 29974, DOI 10.1090/S0002-9904-1949-09189-9
- E. J. Mickle and T. RadΓ³, Density theorems for outer measures in $n$-space, Proc. Amer. Math. Soc. 9 (1958), 433β439. MR 95912, DOI 10.1090/S0002-9939-1958-0095912-0
- Anthony P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944), 205β235. MR 9974, DOI 10.1090/S0002-9947-1944-0009974-4 S. Saks, Theory of the integral, Warsaw, 1937.
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 92 (1959), 322-335
- MSC: Primary 28.00
- DOI: https://doi.org/10.1090/S0002-9947-1959-0112947-5
- MathSciNet review: 0112947