The boundary behavior and uniqueness of solutions of the heat equation.
HTML articles powered by AMS MathViewer
- by F. W. Gehring
- Trans. Amer. Math. Soc. 94 (1960), 337-364
- DOI: https://doi.org/10.1090/S0002-9947-1960-0111932-5
- PDF | Request permission
References
- Garrett Birkhoff and Jack Kotik, Note on the heat equation, Proc. Amer. Math. Soc. 5 (1954), 162–167. MR 60120, DOI 10.1090/S0002-9939-1954-0060120-2
- J. L. B. Cooper, The uniqueness of the solution of the equation of heat conduction, J. London Math. Soc. 25 (1950), 173–180. MR 36413, DOI 10.1112/jlms/s1-25.3.173
- J. Czipszer, Sur la propagation de la chaleur dans une barre infinie. I, Magyar Tud. Akad. Alkalm. Mat. Int. Közl. 3 (1954), 395–408 (1955) (Hungarian, with Russian and French summaries). MR 0076170
- Leopold Fejér and Friedrich Riesz, Über einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), no. 3-4, 305–314 (German). MR 1544499, DOI 10.1007/BF01203630
- W. Fulks, On the unique determination of solutions of the heat equation, Pacific J. Math. 3 (1953), 387–391. MR 55548, DOI 10.2140/pjm.1953.3.387
- F. W. Gehring, The Fatou theorem and its converse, Trans. Amer. Math. Soc. 85 (1957), 106–121. MR 88569, DOI 10.1090/S0002-9947-1957-0088569-X
- F. W. Gehring, On solutions of the equation of heat conduction, Michigan Math. J. 5 (1958), 191–202. MR 106343, DOI 10.1307/mmj/1028998064
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- Philip Hartman and Aurel Wintner, On the solutions of the equation of heat conduction, Amer. J. Math. 72 (1950), 367–395. MR 36412, DOI 10.2307/2372040
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- A. J. Lohwater, A uniqueness theorem for a class of harmonic functions, Proc. Amer. Math. Soc. 3 (1952), 278–279. MR 46494, DOI 10.1090/S0002-9939-1952-0046494-5
- Lynn H. Loomis, The converse of the Fatou theorem for positive harmonic functions, Trans. Amer. Math. Soc. 53 (1943), 239–250. MR 7832, DOI 10.1090/S0002-9947-1943-0007832-1
- Daniel Resch, Temperature bounds on the infinite rod, Proc. Amer. Math. Soc. 3 (1952), 632–634. MR 49434, DOI 10.1090/S0002-9939-1952-0049434-8
- Friedrich Riesz, Eine Ungleichung für harmonische Funktionen, Monatsh. Math. Phys. 43 (1936), no. 1, 401–406 (German). MR 1550542, DOI 10.1007/BF01707619
- P. C. Rosenbloom, Linear equations of parabolic type with constant coefficients, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N.J., 1954, pp. 191–200. MR 0067319 S. Saks, Theory of the integral, Warsaw, 1937. S. Täcklind, Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique, Nova Acta Soc. Sci. Upsal. vol. 10 (1936) pp. 1-57. A. Tychonoff, Théorèmes d’unicité pour l’équation de la chaleur, Rec. Math. (Mat. Sb.) vol. 42 (1935) pp. 199-216.
- D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95. MR 9795, DOI 10.1090/S0002-9947-1944-0009795-2 —, The Laplace transform, Princeton, 1946.
- D. V. Widder, Integral transforms related to heat conduction, Ann. Mat. Pura Appl. (4) 42 (1956), 279–305. MR 87808, DOI 10.1007/BF02411881
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 94 (1960), 337-364
- MSC: Primary 35.00
- DOI: https://doi.org/10.1090/S0002-9947-1960-0111932-5
- MathSciNet review: 0111932