Unique continuation for elliptic equations
HTML articles powered by AMS MathViewer
- by M. H. Protter
- Trans. Amer. Math. Soc. 95 (1960), 81-91
- DOI: https://doi.org/10.1090/S0002-9947-1960-0113030-3
- PDF | Request permission
References
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067 L. Bers, (a) Theory of pseudoanalytic functions, New York, New York University, 1953.
- Lipman Bers, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math. 8 (1955), 473–496. MR 75416, DOI 10.1002/cpa.3160080404
- A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 80 (1958), 16–36. MR 104925, DOI 10.2307/2372819 T. Carleman, Sur les systèmes linéaires aux derivées partielles du premier ordre a deux variables, C. R. Acad. Sci. Paris vol. 197 (1933) pp. 471-474.
- H. O. Cordes, Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1956 (1956), 239–258 (German). MR 0086237
- Avron Douglis, Uniqueness in Cauchy problems for elliptic systems of equations, Comm. Pure Appl. Math. 6 (1953), 291–298. MR 64278, DOI 10.1002/cpa.3160060206
- Avner Friedman, Uniqueness properties in the theory of differential operators of elliptic type, J. Math. Mech. 7 (1958), 61–67. MR 0093651, DOI 10.1512/iumj.1958.7.57005
- Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations. III. Approximations by spherical harmonics, Amer. J. Math. 77 (1955), 453–474. MR 76156, DOI 10.2307/2372634
- Erhard Heinz, Über die Eindeutigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1955 (1955), 1–12 (German). MR 0074666 L. Hörmander, On the uniqueness of the Cauchy problem, mimeographed.
- P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 747–766. MR 86991, DOI 10.1002/cpa.3160090407
- Sigeru Mizohata, Unicité dans le problème de Cauchy pour quelques équations différentielles elliptiques, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 31 (1958), 121–128 (French). MR 103347, DOI 10.1215/kjm/1250776908
- Sigeru Mizohata, Unicité du prolongement des solutions des équations elliptiques du quatrième ordre, Proc. Japan Acad. 34 (1958), 687–692 (French). MR 105553
- Claus Müller, On the behavior of the solutions of the differential equation $\Delta U=F(x,U)$ in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505–515. MR 62920, DOI 10.1002/cpa.3160070304
- Louis Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math. 10 (1957), 89–105. MR 86232, DOI 10.1002/cpa.3160100104
- R. N. Pederson, On the unique continuation theorem for certain second and fourth order elliptic equations, Comm. Pure Appl. Math. 11 (1958), 67–80. MR 98900, DOI 10.1002/cpa.3160110104
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 95 (1960), 81-91
- MSC: Primary 35.00
- DOI: https://doi.org/10.1090/S0002-9947-1960-0113030-3
- MathSciNet review: 0113030