Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler
HTML articles powered by AMS MathViewer

by R. C. Bose and S. S. Shrikhande PDF
Trans. Amer. Math. Soc. 95 (1960), 191-209 Request permission
References
  • W. W. Rouse Ball, Mathematical Recreations and Essays, The Macmillan Company, New York, 1947. Revised by H. S. M. Coxeter. MR 0019629
  • R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353–399. MR 1221
  • R. C. Bose, A note on the resolvability of balanced incomplete designs, Sankhyā 6 (1942), 105–110. MR 8064
  • R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyā 8 (1947), 107–166. MR 26781
  • —, A note on orthogonal arrays, Ann. Math. Statist. vol. 21 (1950) pp. 304-305 (abstract). —, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements, Bull. Calcutta Math. Soc. Silver Jubilee vol. 51 (1959).
  • R. C. Bose and W. S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Statistics 23 (1952), 367–383. MR 49144, DOI 10.1214/aoms/1177729382
  • R. C. Bose, S. S. Shrikhande, and K. N. Bhattacharya, On the construction of group divisible incomplete block designs, Ann. Math. Statistics 24 (1953), 167–195. MR 55964, DOI 10.1214/aoms/1177729027
  • R. C. Bose and S. S. Shrikhande, On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order $4t+2$, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 734–737. MR 104590, DOI 10.1073/pnas.45.5.734
  • K. A. Bush, A generalization of a theorem due to MacNeish, Ann. Math. Statistics 23 (1952), 293–295. MR 49145, DOI 10.1214/aoms/1177729449
  • K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics 23 (1952), 426–434. MR 49146, DOI 10.1214/aoms/1177729387
  • O. Eckenstein, Bibliography of Kirkman’s school girl problem, Messenger of Math. vol. 41 (1911-1912) pp. 33-36. L. Euler, Recherches sur une nouvelle espéce des quarres magiques, Verh. zeeuwsch Genoot. Wetenschappen vol. 9 (1782) pp. 85-239.
  • F. W. Levi, Finite Geometrical Systems, University of Calcutta, Calcutta, 1942. MR 0006834
  • H. F. MacNeish, Das problem der $36$ offiziere, Jber. Deutsch. Math. Verein. vol. 30 (1921) pp. 151-153.
  • Harris F. MacNeish, Euler squares, Ann. of Math. (2) 23 (1922), no. 3, 221–227. MR 1502613, DOI 10.2307/1967920
  • Henry B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13 (1942), 418–423. MR 7736, DOI 10.1214/aoms/1177731539
  • E. T. Parker, Construction of some sets of pairwise orthogonal Latin squares, Abstract 553-67, Notices Amer. Math. Soc. vol. 5 (1958) p. 815. J. Peterson, Les $36$ officers, Ann. of Math. (1901-1902) pp. 413-427. P. Wernicke, Das problem der $36$ offiziere, Jber. Deutsch. Math. Verein. vol. 19 (1910) pp. 264-267. F. Yates, Incomplete randomized blocks, Ann. of Eugen. London vol. 7 (1936) pp. 121-140.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 05.00
  • Retrieve articles in all journals with MSC: 05.00
Additional Information
  • © Copyright 1960 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 95 (1960), 191-209
  • MSC: Primary 05.00
  • DOI: https://doi.org/10.1090/S0002-9947-1960-0111695-3
  • MathSciNet review: 0111695