On a certain class of operator algebras
HTML articles powered by AMS MathViewer
- by James G. Glimm
- Trans. Amer. Math. Soc. 95 (1960), 318-340
- DOI: https://doi.org/10.1090/S0002-9947-1960-0112057-5
- PDF | Request permission
References
- James G. Glimm and Richard V. Kadison, Unitary operators in $C^{\ast }$-algebras, Pacific J. Math. 10 (1960), 547–556. MR 115104
- Richard V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273–276. MR 85484, DOI 10.1073/pnas.43.3.273
- Irving Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227–232. MR 50181
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- John von Neumann, Approximative properties of matrices of high finite order, Portugal. Math. 3 (1942), 1–62. MR 6137
- I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73–88. MR 20217, DOI 10.1090/S0002-9904-1947-08742-5
- Hisaaki Yoshizawa, Some remarks on unitary representations of the free group, Osaka Math. J. 3 (1951), 55–63. MR 41854
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 95 (1960), 318-340
- MSC: Primary 46.00
- DOI: https://doi.org/10.1090/S0002-9947-1960-0112057-5
- MathSciNet review: 0112057