Some theorems on stable processes
HTML articles powered by AMS MathViewer
- by R. M. Blumenthal and R. K. Getoor
- Trans. Amer. Math. Soc. 95 (1960), 263-273
- DOI: https://doi.org/10.1090/S0002-9947-1960-0119247-6
- PDF | Request permission
References
- R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math. 9 (1959), 399–408. MR 107298
- Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley-Los Angeles, Calif., 1955. MR 0072370
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR 0031582
- R. O. Davies, Subsets of finite measure in analytic sets, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 488–489. MR 0053184 A. Erdélyi, Higher transcendental functions, vol. II, New York, Bateman Manuscript Project, 1953. O. Frostman, Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. vol. 3 (1935).
- R. K. Getoor, Markov operators and their associated semi-groups, Pacific J. Math. 9 (1959), 449–472. MR 107297
- Paul Lévy, Le mouvement brownien plan, Amer. J. Math. 62 (1940), 487–550 (French). MR 2734, DOI 10.2307/2371467
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR 0062975
- Henry P. McKean Jr., Hausdorff-Besicovitch dimension of Brownian motion paths, Duke Math. J. 22 (1955), 229–234. MR 69425
- Henry P. McKean Jr., Sample functions of stable processes, Ann. of Math. (2) 61 (1955), 564–579. MR 69424, DOI 10.2307/1969814
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019 G. Polya, On the zeros of an integral function represented by Fourier’s integral, Messenger of Math. vol. 52 (1923) pp. 185-188.
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 95 (1960), 263-273
- MSC: Primary 60.00
- DOI: https://doi.org/10.1090/S0002-9947-1960-0119247-6
- MathSciNet review: 0119247