Projection constants
HTML articles powered by AMS MathViewer
- by B. Grünbaum
- Trans. Amer. Math. Soc. 95 (1960), 451-465
- DOI: https://doi.org/10.1090/S0002-9947-1960-0114110-9
- PDF | Request permission
References
- Edgar Asplund, Comparison between plane symmetric convex bodies and parallelograms, Math. Scand. 8 (1960), 171–180. MR 125495, DOI 10.7146/math.scand.a-10606 T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Berlin, 1934.
- Mahlon M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315–319. MR 22686, DOI 10.1090/S0002-9947-1947-0022686-9 —, Normed linear spaces, Berlin-Göttingen-Heidelberg, 1958.
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 187–204. MR 0030135
- S. Kakutani, Some characterizations of Euclidean space, Jpn. J. Math. 16 (1939), 93–97. MR 895, DOI 10.4099/jjm1924.16.0_{9}3
- F. W. Levi, Über zwei Sätze von Herrn Besicovitch, Arch. Math. 3 (1952), 125–129 (German). MR 50295, DOI 10.1007/BF01899353
- F. J. Murray, On complementary manifolds and projections in spaces $L_p$ and $l_p$, Trans. Amer. Math. Soc. 41 (1937), no. 1, 138–152. MR 1501894, DOI 10.1090/S0002-9947-1937-1501894-5
- Herbert Naumann, Beliebige konvexe Polytope als Schnitte und Projektionen höherdimensionaler Würfel, Simplizes und Masspolytope, Math. Z. 65 (1956), 91–103 (German). MR 78701, DOI 10.1007/BF01473872
- Andrew Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947. MR 5777, DOI 10.1090/S0002-9904-1941-07593-2
- Andrew Sobczyk, Projections in Minkowski and Banach spaces, Duke Math. J. 8 (1941), 78–106. MR 3443
- Angus E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614–616. MR 20718, DOI 10.1090/S0002-9904-1947-08855-8
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 95 (1960), 451-465
- MSC: Primary 46.00
- DOI: https://doi.org/10.1090/S0002-9947-1960-0114110-9
- MathSciNet review: 0114110