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1. Introduction and summary. If w(x) =w(x, ax, • • • , ar) is any element

of the free group on generators x, ci, • • ■ , ar, one may ask what elements

M = w(ai, • • • , ar) of the free subgroup on generators ax, • ■ • , ar satisfy the

equation w(u) = \. As a trivial example, if w(x) =xala_1ar1, the solutions w

are all elements ox where v is an integer. This example suggests already that

the answer to the general problem should be sought in terms of "parametric

words," that is, of group theoretic expressions in the generators ax, • ■ • , ar

that contain certain integer-valued parameters vu ■ ■ ■ , vd as exponents. In

fact, we succeed in giving an effective method of associating with any w(x),

except w(x) = 1 identically, a finite set of such parametric words with the

property that the set of group elements represented by them under all sub-

stitutions of integers for the parameters is precisely the set of all elements u

such that w(u) = 1.

The establishment of this result falls into two parts. The key to the first

part is a familiar cancellation argument that seems to originate with Nielsen

[3] (see also, for example, Nielsen [4] and Kurosh [l, vol. 2, p. 17]) saying,

roughly, that if, in a product of words representing elements of a free group,

no word cancels entirely into the two adjacent words, then the product can

not reduce to the empty word. This, or even a weaker argument, when ap-

plied to a given solution u of the equation w(u) = 1 provides a transformation

of w(x) into w'(x) with u going into corresponding u' that is shorter than u,

and hence, after a finite number of iterations, yields w"(x) with correspond-

ing u" = 1, from which u can be recovered. The crucial step is to specify these

transformations in such a way that the nature of the transformations, as well

as a bound on their number, depends only on w(x) and not upon u. This

proves possible if one admits parametric words, and enables us to associate

with w(x) a finite set of parametric words whose values include all solutions

u of w(u) = 1.

The second part of the argument is devoted to replacing this set of

parametric words by a new set whose values are precisely all solutions. For

this we require the theory of free X-groups, where X is the polynomial ring

Z[vi, ■ • • , vd], and, although we try to make clear here all the concepts and

results required, we must refer to an earlier paper [2] for a basic algorithm.

2. A class representing all solutions. We begin by reviewing some familiar

considerations in the theory of free groups. Let G be the free group on a speci-
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fied set of generators. A letter is a generator or the inverse of a generator.

A word is a finite sequence, possibly empty, of letters, and represents that

group element which is the product of its letters, in order. A word is reduced

if no two successive letters are inverses of each other. Every group element is

represented by exactly one reduced word. We write w = Wi-w2.wn to

express that w is the product of wi, w2, ■ ■ ■ , wn "without cancellation": that

is, the reduced word representing w is the result of juxtaposing, in order, the

reduced words for Wi, w2, ■ ■ ■ , wn. Commonly, in a product uv some part

ending u will cancel against some part beginning v; precisely, for all u and v

there exist unique u', v' and p such that u = u'-p, v = p~1-v' and uv = u'-v'.

It is useful to note that a relation u-v = u'-v' implies either u = u'-p, v' = p-v

for some p, or else u'=u-p' and v = p'-v' for some p'. Further, each u can

be written uniquely as u=p~1-v-p where v is cyclically reduced, that is,

w = v ■ v.

To state the key result mentioned above, define a triple of group elements,

(u, v, w), to be singular if v cancels entirely in forming the product uvw: pre-

cisely, if there exist u',w',p and q such that u = u' -p,w = q-w' and v = p~l-q~l,

whence uvw = u'w'.

Proposition 1. If wiw2 ■ ■ ■ wn = 1, n ^ 1, then at least one of the triples

(1, wu w2), (wu w2, wi), ■ • • , (w„-2, wH-i, wn), (wn-i, wn, 1) is singular.

To prove this, suppose that wi, w2, • • • , wn, w^l, are elements such that

none of the triples listed is singular. Elements pi, for l^i<n are uniquely

determined by the conditions Wt = w[ -pi, wi+i = p~1-w'i'+2, WiWi+i = w[ -wj+j,

and it follows from the hypothesis that

-l -l -l
Wi  =   Vi-pi,      W2  =  pi    -Vi-pi,  ■   •   •  ,  Wn-1   =   pn-2-Vn-Vpn-U      Wn   =   pn-l'Vn

for elements vu v2, ■ ■ ■ , s„^l such that »i»i+i==»,-'»i4i. It follows that

WiW2 ■ ■ ■ wn has the nonempty reduced form Vi-v2.vn, whence the prod-

uct is not 1.

We want now to apply this proposition to the situation that w(x) and u

are given such that w(u) = l. The reduced representation of w(x) yields a

unique expression of w(x) in the form

w(x) = a ■ xei ■ c2 • xn ■ c3.ct-xe'-b,

for some t^O, ei, e2, ■ ■ ■ , e<= ± 1, and a, c2, ■ ■ • , ct, b elements of the free

group Fo on generators fli, • • • , ar. The degree of w(x) is t. If w(x) = 1 identi-

cally, all elements u of F0 are solutions, and since it is evident that, for r> 1,

there is no finite set of parametric words representing all u in F0, we have no

choice but to exclude this case from consideration. Otherwise, if w(x) has

degree t = 0, w(u) assumes the same value ib^I for all u, the set of solutions

is empty, and the conclusion that we are seeking holds vacuously. It is easy
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to check that, if we begin with some w(x) of degree t>0, all new w'(x) intro-

duced in the course of the reasoning that follows will also have positive de-

gree, so that we are justified in tacitly excluding the case t = 0 from further

consideration.

It is convenient to define ct+i = ci = ba and e(+x = ex. With any w(x) as

above, and any element u in £0, we now define the set A (w, u) to consist of

all consecutive triples in the sequence obtained from

ue>, C\, un, c2, ue*, c3, • • • , c,, u'>, Ci, u'1

by deleting any terms c, = l. Then Proposition 1 gives us immediately the

following result.

Proposition 2. If w(x) and u are such that w(u) — \, then A(w, u) con-

tains at least one singular triple.

Under the supposition that a triple of the type (c,-, u, c,+x) is singular, the

element u is determined, within a finite number of possibilities, from the

knowledge of w(x) alone. For this supposition requires that there exist p, q, r,

and s such that Ci — p-q, c,+x = r ■ s and that u = g_1r_1, and it is clear that there

are only finitely many such "factorizations" of the given c,-, c,+x, hence only

finitely many such elements u. It is hardly necessary to emphasize that not

all elements u obtained in this fashion need satisfy the equation w(u) = \.

In the same vein, suppose a triple (u, u, ci) is singular. Write u = p~l-v-p

with v cyclically reduced. Since uu = p~1-v-v-p, the supposition requires that

v-p cancel entirely into ci} hence that ct have the form ci = p~1-v~l-q for

some q. Since given c,- has only finitely many factorizations of this sort, there

are only finitely many possibilities for u.

Similar reasoning applies to singular triples of the type (u, c,-, u), under

an additional hypothesis. Singularity implies that we have both u = p-q and

u = r-s where ci = q~1-r~l. We make here the further hypothesis that the parts

q and r together include all of u, hence, for some v, y, z that u = vyz with

q = y-z, r = v-y, and therefore ci = z~1-y~l-y~1-v~1. It then follows as before

that there are only finitely many possibilities for u.

A further case is that of a singular triple (u, u, u). Writing u = p~1-v-p,

with v cyclically reduced, we see that uuu = p~l-v-v-vp, and singularity

implies that v = 1 and hence u = 1.

Triples (cit u~l, ci+1) can be treated in a manner symmetrical to that for

(Ci, u, ci+i). Triples (u~\ u~~x, ci), (cit u, u) and (c(, w1, u~l) are symmetrical

with (u, u, c). Triples (u~x, c{, u~l) are symmetrical with (u, c{, «); and

(u~x, m_1, u~l) with (u, u, u).

The remaining possibilities we term critical triples; these are singular

triples of the types (ue, c, u"'), for e, e'— +1, where, if e = e', we require

that u' = p-q-r and Ci — r~l-p~x for some g?^l and p, r.
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With each w(x) we associate the finite set B(w) of all elements of the

following forms:

(i) q~lr~x where some cfl = p-q, cfl = r-s;

(ii) p~lvp where some c^l~p~x-vfx-r, vt^I;

(iii) pqr where some c*l = p-q-q-r, gj^l.

Note that 1 is in B(w) by virtue of (i), and that B(w) includes all values

for m arising from a noncritical singular triple. This establishes the following.

Proposition 3. If w(u) = l, then either u is in B(w) or else A(w, u) con-

tains some critical triple.

Our next aim is to show that if A(w, u) contains a critical triple, it is

possible to replace w(x) and u by a pair w'(x) and «', equivalent for the pur-

pose at hand, such that A (wr, u') contains fewer critical triples than A (w, u).

More specifically, with each critical triple r = (ue, c, ue'), e, e' = ± 1, we shall

associate an element d(x)=axb, where a and b are in Fo, such that w'(x)

= w(axb) and u' = a~1ub~1 have the desired property. In view of the sym-

metry defined by the antiautomorphism v—>v~*, it will suffice to treat only

the two types of critical triples, (u, c, u) and (u, c, w-1).

Case 1. Critical t = (u, c, u). By hypothesis we have u = p-q-r and

c = r~1-p~1 for some g^l, p, and r. It may happen that either r~l = p-z or

p~l = z • r for some z; by left-right symmetry it suffices to treat only the former

case.Case la. r~1 = p-z. Then u = p-q-z~1-p~i, c = p-z-p~l, and, since cs^l,

zs^l. Therefore we can write u = p-zm-u'■z~"-p~1 where, first, w>0 is maxi-

mal, and then (for this n), m^O is maximal. In this case we define d(x)

= pzmxz~np~l. In Case lb, where neither r~l = p-z nor p_1 = z-r, we define

d(x) =pxr.
Case 2. Critical t = (u, c, m_1). Write c = p-z-p~l with z^l cyclically re-

duced. Singularity requires first that u=v-p~l for some v, and hence ucu~l

= vzv~l. Moreover, cyclically reduced z can not cancel both left against v

and right against v~x, so that singularity requires that it cancel wholly to one

side, and by symmetry we may suppose that v = r-z~1 for some r. In Case 2a,

where r = p-q for some q, we have that u = vp~1 = r-z~i-p~1 = p-q-z~l-p~1,

and we may write u = p• zm• u''■ z~n■ p*1 with first ra>0 and then ra^O maxi-

mal, and define d(x) = pzmxz~np~x, exactly as in Case la. In Case 2b, we have

u = r- z~l ■ p"1 where r = p-q for no q. We write u = u' ■ z~n ■ p"x with n > 0 maxi-

mal, and define d(x) =xz~np~1.

Proposition 4. Let d(x) =axb be associated with a critical triple in A (w, u).

If w'(x)=w(axb) and u'=a~1ub~1, then A (w\ u') contains fewer critical triples

than A(w, u).

The proof of Proposition 4 depends on three lemmas. To state these, con-

sider all the consecutive triples of the form t= (ue, c, u''), e, e' = +1 in the

sequence
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ue>, Ci, W\ c%, u°°, c3, • • • , ct, ue', a, u%

where we no longer exclude triples with c—1, although by definition such

triples are not counted as critical. Clearly the sequence associated with w'(x)

and u' will have exactly the same number, t-\-i, of triples of this sort as for

w(x), u; and the triple r' corresponding to r is easily calculated from t.

Proposition 4 will evidently be a consequence of the following three lemmas.

Lemma 4.1. If r is a critical triple in A(w, u), and w'(x), u' are defined by

means of d(x) associated with r, then the corresponding triple r' is no longer

critical.

Lemma 4.2. If ci+i^\, but the triple t = (uei, c,+x, u'i+1) is not critical, then

the corresponding triple r' is not critical.

Lemma 4.3. If ci+i = 1, so that T = (uei, c,+x, ue<+l) is by definition not criti-

cal, then also t' is not critical.

The proof of Lemma 4.1 falls into four cases, corresponding to the four

cases that, using symmetry, were considered in defining the d(x) associated

with a critical triple.

Case la. t=(u, c, u) = (p-zm-u'-z~n-p-x, p-z-p~l, p• zm• u'■ z_"• p~l)

whence evidently r' — (u', zm-n+1, u'). If s = m — w + 1 =0, r' is by definition

not a critical triple and we are done. Suppose s>0; since re^l, m — re + l>0

implies that m>0. The expression for u, with m>0, insures that there is no

cancellation in the product zu' =z-u', hence none in the product z'u'' = z'-u'.

Singularity of r' would therefore require that z* cancel entirely to the left

into u', implying that u' =vz~" for some v, which contradicts the maximality

of re. Suppose s<0; then u''z~n = u'• z~", w>0, implies that u'z' = u' -z*. Singu-

larity of t' would require that z* cancel entirely to the right into «', hence

u'=z~'-v for some v, which, since s<0, contradicts the maximality of m.

Case lb. r=(u, c, u) = (r~l-u' -q~x, q-r, r-l-u'-g_1), whence r' = (u', l,u'),

by definition not critical. Cases 2a and 2b both give t'=(u', z, m'-1). The

expression for u gives u'z~" = u'• z~n, re2:1, hence zu'~x = z-u'~x so that singu-

larity would require that z cancel entirely to the left into u', hence that

u' = vz~l for some v, which contradicts the maximality of re.

To prove Lemma 4.2 we establish a slightly stronger result: if w'(x)

= w(axb) and u = a-u'-b, for arbitrary a and b in £0, and r is not critical,

then corresponding r' is not critical. By symmetry it suffices to treat the

cases that t = (m,c, u) or r = (u,c, u~l). By induction on the sum of the lengths

of a and b it suffices to treat the two cases that u = a-u' and u = u'-b, where

a and b are single letters. First, if r = (u, c, u) there is symmetry between the

cases u = a-u' and u = u'-b, and we treat only the case u = u'-b. Then t,

= (u', be, u'). Suppose that bc = b-c. Then u = u'-b implies that be does not

cancel at all to the left, whence singularity of r' would require that be cancel

entirely to the right, and that u' = c~l-b~l-v for some v, and for r' to be criti-
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cal we would have » = 1. But this contradicts the assumption that u = u'-b.

Supposing on the other hand that bcy^b-c, since b is a single letter we would

have c = b~x-f for some /, with r' = (u',f, u'). For r' to be critical we would

have to have u' — p-q-r with/ = r-1-£_1 and q^\. But this would imply that

u = p-q-r-b with c = &-1 • r~x • p~l and hence that r was critical.

Second, let r= («, c, m_1), ct^I. If u = a-u', then r' = (w', c, w'-1)i and r is

not singular, so that c does not cancel entirely in the product ucu~x and it

will, a fortiori, not cancel entirely in u'cu'~x. Suppose then that u = u'-b,

hence t' = (u', bcb~x, u'~x). If bc = b-c, because u'b = u'-b and hence also

b~xu'~x, singularity of r' would require that bcb~x not end in b~x, hence that

c=f-b for some/. It follows that bcb~x = b-f, and that this must cancel en-

tirely to the right, into u'~1=f~1-b~1-v for some v. But this would give

u~1 = b~1-u,~1 = b~1-f~1-b~1-v = c~i-b~1-v, implying that t was singular. The

case that cb~x = c-b~l follows by symmetry. There remains only the case that

c = b~x-f-b for some/, where singularity of t' = (u', f, u'~l) clearly implies

that of r = (u'b, b~xfb, b~xu'-x).

To prove Lemma 4.3 it suffices by symmetry to treat only the first of the

two cases t = (u, 1, u) and t = (u~x, 1, u~x). We proceed again according to

the four cases under the definition of d(x).

In Cases la and 2a, r = (p-zm-u'■z~n-p~1, 1, p■ zm■ u'• z~n• p~x), whence

t' = (u', zm~n, u'), and, taking s = m — n, the argument used for Case la of

Lemma 4.1 shows that r' can not be critical.

In Case lb, r = (p-u'-r, 1, p-u'-r) whence r'= (u', rp, u'). The hypothesis

of this case ensures that neither factor of c = r/> cancels entirely into the other,

whence c begins with the first letter of r and ends with the last letter of p,

and from the expression u = p-u'-r it follows that u'cu' = u'-c-u'.

In Case 2b, r = (u'-z~n-p-x, 1, u'-z~n-p-1) whence t' = (u', z~n-p~x, u').

The expression u = u' • z~" ■ p~x precludes any cancellation to the left. Singu-

larity of t' would therefore require that z~"-p~x cancel entirely to the right,

into u', hence a fortiori into u = u'-z~n-p~x, n^l. But this contradicts the

hypothesis for this case, that u = r-z~x-p~x where r = p-q for no q.

The proof of Proposition 4 is complete. We now associate with each w(x)

a set C(w) of elements that will include all d(x) associated with any critical

triple in A(w, u), for any u. We define C(w) to consist of all elements of the

following forms:

(i) pzmxz~np~x, xz~np~x, or pzmx, where some cf1 = p-z-p~x, Z5*l, and m

and n are integers;

(ii) pxr where some cf1 = p-r.

Consider three finite sequences: w0(x), Wi(x), • • ■ , wk(x); do(x), di(x),

• • • , dk-i(x); and m0, «i, • • • , uk; and suppose that, for all i, l^i^k, we

have   di^i(x)EC(Wi-i),   w,(x) =w,_i(«f,_i(a:)),   and   tt,-_i = <fi_i(tt,).   If   also

w0(uo) = l,   it   follows   that   w,(w,) = l,   l^i^k.   We   note   also   that   u0

= do(di( ■ ■ • (dk-i(uk)) •••)).

By Proposition 4, if w(x) =w0(x) and m0 = m are given satisfying w(u) = 1,



1960] EQUATIONS IN FREE GROUPS 451

there exists a chain of the sort described above such that the numbers of

critical triples in A(w0, Mo), A(wi, ui), ■ ■ ■ decrease strictly until some

A iwk, uk) is reached that contains no critical triples. Since A (w0, «o) contains

at most t + l critical triples, where t is the degree of w(x), we shall have

k^t + l. Since wkiuk) = l, while Aiwk, uk) contains no critical triples, it fol-

lows by Proposition 3 that wk is in Biwk).

Associate with each wix) the set T>(w) of all elements u such that, for

some k^t + 1, there exist woix)=wix), • ■ ■ , wkix) and doix), ■ • • , ^_x(x),

related as above, together with an element uk in Biwk) such that

u = doidi( ■ ■ ■ idk-iiuk)) ••■)). Then the argument just given establishes

the following.

Proposition 5. If w{u) = 1, then u is in Diw).

The set Uiw) of all u in T"o such that w(m) = 1 is, in general, infinite; since

Uiw)C.Diw), the set Diw) must inevitably also be infinite in general. How-

ever, Biw) is finite, and the elements of C(w) are among the values of a

finite set of parametric words, obtained by replacing the integers m, re ap-

pearing in the definition of C(w) by parameters p and v. By this device we

shall define a finite set D'iw) of parametric words whose values include all

u such that wiu) = 1.

There is only one obstacle to be surmounted. If we define wx(x) =w(<f(x))

where now d(x) contains parameters, say dix)=pz>1xz~"p~x, we find that the

coefficients d of wx(x) now contain parameters, and in order to continue with

the definition of a set C'iwi) of appropriate diix), we are required to find some

substitute for the conditions, such as cfl=p-z-p~l, that appear in the defini-

tion of Ciw).

For this purpose we need a precise concept of parametric word. Recur-

sively, we define a parametric word of height 0 to be any ordinary reduced

word (containing no parameters), while, for />0, we define a parametric

word of height t to be a formal expression

«1   "2 «,.

03   =  0>l 0)2     •   •   • 0>„

where the wx, • • ■ , co„ are parametric words of height /— 1 and the elements

ai, • ■ ■ , an are polynomials in X — Z\yi, ■ ■ • , vd] for some Vi, • • • , vd. For

our purposes it is not important to specify in detail what is meant by w_1,

by a word wix) with coefficients yt, nor how the coefficients of cox(x) =u>i8ix))

are specified, where 5(x) = ax/? and a, jS are parametric words not containing x.

A factorization relation, cd~$: \p for parametric words will now be defined

recursively. If « is of height 0 we require that <f> and \p be of height 0, and that

u = v-z, where u, v, z are the elements of £0 represented by w, <f>, \p. For u, as

above, of height t>0, we require that

<j>  =  Wl 012     •   •   • 03hTI, \p  =  fWAOJA+I    •••<!)„,
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where l^h^n, where j3, y are parameters, and r\, f are parametric words of

height t—\ such that w^rj: f. We define co~coi: co2: ■••;«, to mean that

w~a>i: 77!, 771~w2: t?2, • • • , 7?„_2=r;„_i~Wn-i: w„ for some t?i, • • • , 77B_i.

It is routine to verify that if a parametric word w represents an element

u of F0 under a certain assignment of values to the parameters, and if

u = ui-u2.un, then there exist «i, w2, • • • , w„ such that w~wi:w2: • • • :

w„ and that each w,- represents corresponding ut under the same assignment of

values.

We can now paraphrase the definitions of D(w), C(w), and D(w) for u(x)

that contain parameters. We define B'(w) to consist of all elements of the

following forms:

(i) $~ty-1 where some y^^y: 4> o,nd yf1'^: f (7,-, yj coefficients of u(x));

(ii) <f)~x\f/<j) where some yfl^-'^>i1:\p'ix: x;

(iii) 4>\p where some yf l~(f>-.x'-^P-
(We note that, to avoid certain ambiguities, we have made the set B'(co)

somewhat larger than necessary.) We define C'(co) to consist of all parametric

words of the following form:

(i) (p^x^p'x where some yt1~4>'-xP'-X and M. v are parameters.

The definition of D'(u) now parallels exactly that of D(w) in terms of the

B(w) and C(w).

It is clear from the manner of definition of D'(u>) that, in the case that

w(x)=w(x) contains no parameters, U(w) is included in the set of values of

the elements of D'(w). As defined, D'(w) is not finite, since we have imposed

no restriction on the new parameters introduced in the factorization process,

or, explicitly, in the definition of C'(u>). Consequently we modify the definition

by supposing the set of all parameters ordered, and requiring that in an ele-

ment of D'(w) these parameters be all distinct, and constitute an initial set

of the totality of parameters. With this requirement, D'(w) is finite, and we

have established the following.

Proposition 6. There is an effective process associating with each w(x) a

finite set D'(w) of parametric words such that the set of their values includes all

u in Fo satisfying w(u) = 1.

3. A class constituting all solutions. Proposition 6 effectively associates

with each nontrivial w(x) —w(x, Oi, • • • , aT) a finite set of parametric words

0i. • • • > <t>n in the generators Oi, ■ • • , aT, and containing certain parameters

vi, • • • , Vd, such that each element u in the free group F0 on generators

Oi, • • • , ar that satisfies w(u) = l is the value of some $,-, l^i^n, under a

suitable substitution of integers for the parameters vi, • • • , Vd- Our ultimate

goal is to replace these <£,-, effectively, by a finite set of parametric words

l^ii • ■ • 1 i'm, such that the union of the sets V(ipj) of their values is precisely

the set U(w) of all u in F0 that satisfy w(u) = l. To accomplish this it will
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clearly suffice to show that given w(x) and <p effectively determine $1, • • • ,*p,

such that

Uiw) C\ Vi<t>) C Vi^i) U • • • U F(^0 £ £/(w).

For this we use the main concepts and results of [2], which we will sum-

marize as required. A word henceforth will be a pair (co, C), where co is the

sort of formal expression that was called a "parametric word" previously,

and C is a finite set of formal conditions pa = pj3 or pa<pfi, where a and /3 are

elements of X = Z\yi, ■ ■ ■ , vd], d^.0. If p is any retraction of X onto Z, that

is, any assignment of values in Z to the parameters, we denote by pco the

element of £0 represented by co under this substitution. For the set of all

values pco of co under p satisfying the conditions C we write F(w, C).

The roots of co are those expressions £ such that a contains a part £a, with

a not a constant; the exponents of co are the a thus occurring. A word (tj, C)

is primitive if (77, C) = (f", C) only for ce = +1; that is, the X-group axioms to-

gether with equations /3 = 7 whenever C contains the condition pj3 = py, do not

suffice to imply any equation n = f" except for a= +1. Those properties of a

normal word (co, C), as defined in [2], that are essential here are the following:

all its roots are primitive, that is, (f, C) is primitive for every root £ of co;

all its exponents are positive, that is, C contains pa>0 for every exponent a

of co; and 1 does not belong to Via, C) unless co= 1 identically. It is a trivial

matter to see that none of the results of [2] is affected if we impose on

normal words the additional condition that for any linear a in X, if the set

of values pa for p satisfying C is finite, then it consists of only a single integer.

Let w(x) be fixed henceforth. A reduction chain for an expression c& is

defined to be a sequence (cox, Ci), ■ ■ ■ , (co„, Ci), for some «=^1, with the

following properties:

(1) o>i — wi<p); and Cx implies no nontrivial equation, that is, implies pa = pB

only for a = /3;
(2) (co„, Cn) is normal; and, for each root f o/c6, (£, Cn) is primitive;

(3) for each i, l^i<n, (co,-, CO and (co,+i, Ci+i) are related in one of the

following ways:

(3a) coi+x = co,- and C1+x is equivalent to Ct;

(3b) d+i = Ci and coi+x results from co,- by replacing some occurrence of a

by j8 where d contains pa = pj3;

(3c) d+i = d and cot+x results from co,- by an application of one of the X-group

axioms, with the proviso that the axiom uau^ — ua+t is never used to introduce an

exponent of higher degree than those already present;

(3d) co,+x=co,- and Cl+X is obtained by adjoining to C,- a condition pa>0 or

pa = 0, where a is a linear combination of the exponents of coi.

We observe immediately that F(w(0), C„) = F(co„, Cn).

Lemma 1. If (cox, Ci), ■ ■ • , ia„, Cn) is a reduction chain for <f>, where all
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exponents of <j> are linear, then there exists (\p, D) such that F(c6, C„)C V(ip, D),

that (w(\p), D) has a normal form (x, D), and that D implies no nontrivial equa-

tion.

Proof. If C„ implies no nontrivial equation, we can take \p = c& and D = CB.

This is the case, in particular, if the number d of parameters is 0. For an

induction, we assume that d>0, and that the lemma holds for all d'<d. In

view of our opening remark, it suffices to treat the case that some Ck implies

a nontrivial equation. Our main task is to show that the first such Ck then

implies a linear equation.

We shall establish by induction that, for l^i<k, each (co,-, Ci) has the

following property:

(P) if £ is a root of w,-, then (£, Ci) = (rjm, Ci), where m is an integer and 17

is a conjugate of some root $of<p; every exponent a of co,- is linear; and C,- implies

no nontrivial equation.

Now («i, Ci) has the property P. For the roots of ui = w(<j>) are evidently

powers of the roots of 4>; every exponent of «i is a linear combination of those

of <t>, which are linear by the hypothesis of the lemma; and G implies no

nontrivial equation because of condition (1) in the definition of a reduction

chain.

Assume now that, for some i, («,-, Ci) has the property P, and examine the

circumstances under which (co,-+i, Ci+0 will have the same property. Cases 3a

and 3b are immediate. In Case 3c, application of the axiom ux = u or the

axiom uaug — ua+^, subject to the stated proviso, introduces no new roots and

no nonlinear exponents. Application of the axiom u(vu)a = (uv)au introduces

no new exponents, and only roots that are conjugates of roots of co,-. Applica-

tion of the remaining axiom, (uaY — ua9, preserves P provided either a or /3

is a constant; we shall show that the case of a, /3 both nonconstant can not

arise. Since a/3 is nonlinear, the hypothesis that (co,-, Ci) satisfies P precludes

that co,- should have any part £"^. For the other possibility, suppose that w,-

contained a part (£a)s with /3 nonconstant. Then (£°, Ci) = (r)m, Ci) for some

integer m and 77 conjugate to a root f of <p, and, for some conjugate 6 of £ we

should have (6a, Ci) = (f», Ci), whence, a fortiori, (0a, Cn) = (fm, Cn). By con-

dition (2), (f, Cn) is primitive, whence it follows easily that a divides m,

hence a is a constant.

Under Case 3d, as long as Ci+i implies no nontrivial equation, P is pre-

served. In particular, if Ck is the first that implies a nontrivial equation, then

(coi, Ci), ■ • ■ , (uk-i, Ck-i) all satisfy P, and (cok, Ck) must be obtained, under

Case 3d, by adjoining to C&-i a relation pa>0 or pa = 0. Since all exponents

of o>,- are linear, a must be linear. A new condition pa>0 can imply an equa-

tion only if Ck-i already implies a condition pcf^h for some integer h, so that

Ck implies that pa be one of the integers 1, 2, • • • , h. In any case, Ck and

therefore C„ implies that pa assume one of a finite set of values, and hence,

in view of the additional condition that has been imposed on normal words,
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Cn must imply that pa = h' for some integer h'. Restating this, we have that

Cn implies some pa' = 0 where a! is linear and nonconstant.

A nonsingular linear, possibly nonhomogeneous, transformation on the

parameters vi, • • • , vd does not invalidate any of the foregoing considera-

tions, and permits us to suppose that Cn implies the equation pj^ = 0. We

now form </>' and a chain (wx , C[), - - ■ , («„', CI) by everywhere replacing

vd by 0. Then all exponents of 0' are surely linear. To verify that the new

chain is a reduction chain, conditions (1) and (3) are immediate, while (2)

follows from the observation that Cn contained the condition pvd = 0.

The inductively assumed case of the lemma for d— 1 then gives us (0, D)

such that 7(0', Cn')QViip, D), that (o#), D) has a normal form (x, D), and

that D implies no nontrivial equation. Using again the fact that Cn implies

pvd = 0, we see that 7(0, Cn) = 7(0', C„), whence (0, D) satisfies the conclu-

sion of the lemma.

Lemma 2. If, for all roots £ of <j>, the word (£, 0) is primitive, and if all ex-

ponents of 0 are linear, then there exist 0X, • • • , 0„, for some re 2:0, such that

U(w) H Vi4>, 0) C 7(0i, 0) VJ • • • VJ 7(0,, 0) C tf(w).

Proof. We shall use the following two basic properties of the reduction

to normal form: if some (7, C) has a normal form consisting of the words

(71, Ci), • • ■ , (7„, Cn), re^O, then

(i) a retraction p satisfies C if and only if p satisfies one of Cx, • • • , C„;

(ii)   7(7, C) = Viyu Ci)VJ ■ ■ ■ U7(7„, Cn).
Let (w(0), 0) have a normal form (<rx, Si), • ■ ■ , (<rm, Sm). Write

7= {l, 2, • • • , m}. From (i) it follows that 7(0, 0) = 7(0, Si)KJ ■ • •
\JVi<p, Sm), whence

(iii)   UC\ 7(0, 0) = U.-er [J7H 7(0, 5,) ].
Let 7X be the subset of 7consisting of those i such that (§, Si) is not primi-

tive, for some root £ of 0. Then (£, 5.) = ir,?, St) for some 17 with (77, 50

primitive, and some ft?* +1. Now 0 contains a part £" for some a, and, if

we form 0/ by replacing this part by v", where v is a new indeterminate, then

0/ is, in an obvious sense, shorter than 0. Since the only root of 0/ that is

possibly not a root of 0 is 17, and (77, 50 and therefore (77, 0) is primitive, and

the only exponent of 0/ that is not an exponent of 0 is v, which is linear,

0/ as well as 0 satisfies the hypotheses of the lemma. By an induction on

length, we may suppose that 0/ , shorter than 0, also satisfies the conclusion of

the lemma. Thus there exist 0tX, • • • , 0,-ni, for some ref 3:0, such that

U C\ VW, 0) C      U     7(0,-y, 0) C U.
lSJSn,-

Clearly 7(0, Si)QVi<p!, Si)QVi<p', 0), whence it follows that

(iv) U [U r\ Vi<t,,Si)] C  U      U    7(0,y, 0) C U.
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Next, let i belong to I—Ii, that is, suppose that, for each root £ of 0, the

word (£, S.) is primitive.

We assert that the process of reduction to normal form, as set forth in

[2], when applied to (w(cf>), 0), yields a reduction chain for <6 with last term

(w„, Cn) = (o3i, Si). Cbndition (1) is trivial, since G = 0, and condition (2)

holds by hypothesis. All the parts of condition (3) are contained in the defini-

tion of the reduction process, excepting the proviso attached to the use of the

axiom uau$ = ua+?, and the condition under (3d) that a be a linear combina-

tion of the exponents of coy. But it can be seen by inspection that the algo-

rithm given in [2] for reduction to normal form in fact conforms to these

additional requirements. Therefore Lemma 1 provides us with a word (\pit F,)

such that V(<j>, SifQVtyi, Ti), that (w(\j/i), Ti) has a normal form (x,-, Tt),
and that F,- implies no nontrivial equation.

Define 72 to be the subset of 7—7i consisting of all i for which Xi^l- By

(ii), since (w(\f/i), Ti) has normal form consisting of (x,-, Ti) alone, V(w(\pi), Ti)

= V(xi, Ti). By a property of normal words stated earlier, x.^1 implies

that 1 does not belong to V(xi, Ti), and therefore not to V(w(\f/i), Ti). This

means that, for all p satisfying F,-, w(p\f/i) = pwtyi) ^1, or, in other words,

lir\V(ti, F,) = 0. Since V(4>, Si)QVtyi, Ti), this implies that

(v) u [u n v(<t>, si)] = 0.
iSIj

Finally, for i in the remaining set 73 = 7 — h — 72, x*=l. It follows that

(w(\pi), T,) = (1, Ti), that is, that w(\pi) reduces to 1 by use only of the axioms

for JY"-groups, together with equations a = f3 where F< contains the equation

pa = p$. Since F< contains no nontrivial equations, this means that w(\f/i)

reduces to 1 by use of the axioms alone, which implies that w(p\pi) =pw(\pi) = 1

for all p, that is, that V($i, 0)QU. Since 7(0, S.) C F(^,-, F,)C:F(^,-, 0), it
follows that

(vi) U  [Un F(c6,S,)] C  U  V(+i, 0) C U.
iel> is/a

The conclusion of the lemma now follows by splitting the union over 7

in the right member of (iii) into unions over 7i, 72, 73, and then applying

(iv), (v), and (vi).

Lemma 3. For all <f>, there exist <pi, • • ■ , <f>„, for some n ^0, such that

u(w) r\ v(<t>, 0) c v(<t>u o) \j ■ ■ ■ w v(<pn, o) c u(w).

Proof. Let (c6, 0) have a normal form (<f>u Ci), ■ ■ • , (c6„, Cm). From (ii)

it follows that

(vii) FO,0)=    U    F(c6,-,Ci)C    U    F(c6,-,0).
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Since each (0,-, C,) is normal, for each root £ of 0„ the word (£, Ci) is

primitive, and, a fortiori, (£, 0) is primitive. Form 0/ from 0,- by replacing

all exponents of 0,- by distinct indeterminates. The roots of 0/ are the same

as those of 0,-, with (£, 0) primitive; and, by construction, the exponents of

0/ are linear. Therefore Lemma 2 applies to 0/ to yield 0,x, • • • , 0,-nj., for

some re,-2:0, such that

U C\ 7(0/, 0) C    U    7(0,-y, 0) C U.
lSJSni

Since clearly 7(0,-, 0)C 7(0/, 0), this gives

u r\ 7(0,-, o) c   u  7(0,7, o) c u.
lSJSn,-

Taking the union over all i, l^i^m, and using (vii), we obtain

ur\vi<t>,o)Q  U [r/n 7(0,-, o)] c  u     U  7(0,7,0) c u,

which completes the proof of the lemma.

It was noted at the beginning of this section that this lemma, together

with Proposition 6, suffice to establish our main result.

Theorem. There exists an effective procedure that associates with each ele-

ment w(x)?^l in the free group on generators x, ax, • ■ • , ar, a finite set of para-

metric expressions in the generators ax, • • • , aT, with the property that the set of

elements u in the free group on generators ai, ■ ■ • , ar that satisfy w(m) = 1«

exactly the set of elements represented by one of the parametric words under some

substitution of integer values for the parameters.
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