The $G$ and $H$ functions as symmetrical Fourier kernels
HTML articles powered by AMS MathViewer
- by Charles Fox PDF
- Trans. Amer. Math. Soc. 98 (1961), 395-429 Request permission
References
-
E. W. Barnes, The asymptotic expansion of integral functions defined by generalized hypergeometric series, Proc. London Math. Soc. Ser. 2 vol. 5 (1907) pp. 59-117.
The Bateman Manuscript Project, Higher transcendental functions, Vol. 1, New York, McGraw-Hill Book Co., 1953.
C. Fox, A generalization of the Fourier Bessel integral transform, Proc. London Math. Soc. Ser. 2 vol. 29 (1929) pp. 401-452.
C. S. Meijer, On the G-function, Proc. Nederl. Akad. Wetensch. vol. 49 (1946) pp. 227-237, 344-356, 457-469, 632-641, 765-772, 936-943, 1062-1072, 1165-1175.
- Roop Narain, A Fourier kernel, Math. Z. 70 (1958/59), 297–299. MR 104988, DOI 10.1007/BF01558594 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, University Press, 1937.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 98 (1961), 395-429
- MSC: Primary 33.21
- DOI: https://doi.org/10.1090/S0002-9947-1961-0131578-3
- MathSciNet review: 0131578