Examples of non-Gaussian quasi-invariant distributions in Hilbert space
HTML articles powered by AMS MathViewer
- by Jacob Feldman PDF
- Trans. Amer. Math. Soc. 99 (1961), 342-349 Request permission
References
- Jacob Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958), 699–708. MR 102760
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR 0062975
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951), 275–313. MR 41191, DOI 10.2307/2372178
- I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12–41. MR 102759, DOI 10.1090/S0002-9947-1958-0102759-X —, Foundations of the theory of dynamical systems of infinitely many variables, Mat.-Fys. Medd. Danske. Vid. Selsk. vol. 31 (1959) pp. 1-38.
- Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214–224. MR 23331, DOI 10.2307/1969123
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 99 (1961), 342-349
- MSC: Primary 60.00; Secondary 46.00
- DOI: https://doi.org/10.1090/S0002-9947-1961-0120678-X
- MathSciNet review: 0120678