A regression problem concerning stationary processes
HTML articles powered by AMS MathViewer
- by M. P. Heble
- Trans. Amer. Math. Soc. 99 (1961), 350-371
- DOI: https://doi.org/10.1090/S0002-9947-1961-0124144-7
- PDF | Request permission
References
- N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1954 (German). MR 0066560
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, DOI 10.1090/S0002-9947-1950-0051437-7
- Harald Cramér, On the theory of stationary random processes, Ann. of Math. (2) 41 (1940), 215–230. MR 920, DOI 10.2307/1968827 W. B. Davenport and W. L. Root, Random signals and noise, New York, McGraw-Hill, 1958, pp. 371-381.
- J. L. Doob, The elementary Gaussian processes, Ann. Math. Statistics 15 (1944), 229–282. MR 10931, DOI 10.1214/aoms/1177731234
- Ulf Grenander, Stochastic processes and statistical inference, Ark. Mat. 1 (1950), 195–277. MR 39202, DOI 10.1007/BF02590638
- Ulf Grenander and Murray Rosenblatt, Statistical analysis of stationary time series, John Wiley & Sons, New York; Almqvist & Wiksell, Stockholm, 1957. MR 0084975
- Henry B. Mann and Paul B. Moranda, On the efficiency of the least square estimates of parameters in the Ornstein Uhlenbeck process, Sankhyā 13 (1954), 351–358. MR 63632 A. Zygmund, Trigonometrical series, Warsaw, 1935.
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 99 (1961), 350-371
- MSC: Primary 62.85
- DOI: https://doi.org/10.1090/S0002-9947-1961-0124144-7
- MathSciNet review: 0124144