Almost periodicity and convergent trigonometric series
HTML articles powered by AMS MathViewer
- by Robert G. Uttley
- Trans. Amer. Math. Soc. 99 (1961), 414-424
- DOI: https://doi.org/10.1090/S0002-9947-1961-0136935-7
- PDF | Request permission
References
- A. S. Besicovitch, On generalized almost periodic functions, Proc. London Math. Soc. vol. 26 (1927) pp. 495-512.
—, Almost periodic functions, Cambridge, University Press, 1932.
- H. Burkill, Almost periodicity and nonabsolutely integrable functions, Proc. London Math. Soc. (2) 53 (1951), 32–42. MR 43251, DOI 10.1112/plms/s2-53.1.32
- H. Burkill, Cesàro-Perron almost periodic functions, Proc. London Math. Soc. (3) 2 (1952), 150–174. MR 49372, DOI 10.1112/plms/s3-2.1.150
- J. C. Burkill, Integrals and trigonometric series, Proc. London Math. Soc. (3) 1 (1951), 46–57. MR 42533, DOI 10.1112/plms/s3-1.1.46
- G. H. Hardy and W. W. Rogosinski, Fourier series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 38, Cambridge, at the University Press, 1950. 2nd ed. MR 0044660 E. C. Titchmarsh, A class of trigonometric series, J. London Math. Soc. vol. 3 (1928) pp. 300-304. S. Bochner, Properties of Fourier series of almost periodic functions, Proc. London Math. Soc. vol. 26 (1927) pp. 433-452.
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 99 (1961), 414-424
- MSC: Primary 42.30
- DOI: https://doi.org/10.1090/S0002-9947-1961-0136935-7
- MathSciNet review: 0136935