On the Kronecker products of irreducible representations of the real unimodular group. I
Author:
Lajos Pukánszky
Journal:
Trans. Amer. Math. Soc. 100 (1961), 116-152
MSC:
Primary 22.57
DOI:
https://doi.org/10.1090/S0002-9947-1961-0172962-1
MathSciNet review:
0172962
Full-text PDF
References | Similar Articles | Additional Information
- [1] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568–640. MR 0021942, https://doi.org/10.2307/1969129
- [2] E. T. Copson, An introduction to the theory of functions of a complex variable, Oxford, Clarendon Press, 1955.
- [3] I. M. Gel′fand and M. A. Naĭmark, Unitary representations of the Lorentz group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411–504 (Russian). MR 0024440
- [4] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 0044536, https://doi.org/10.2307/1969423
- [5] -, Induced representations of locally compact groups. II, Ann. of Math. vol. 58 (1953) pp. 193-220.
- [6] F. I. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. (2) 52 (1950), 528–556. MR 0036763, https://doi.org/10.2307/1969431
- [7] F. I. Mautner, On the decomposition of unitary representations of Lie groups, Proc. Amer. Math. Soc. 2 (1951), 490–496. MR 0041856, https://doi.org/10.1090/S0002-9939-1951-0041856-3
- [8] F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, https://doi.org/10.2307/1968693
- [9] John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 0029101, https://doi.org/10.2307/1969463
- [10] M. A. Naĭmark, Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. I. The case of a tensor product of representations of the fundamental series, Trudy Moskov. Mat. Obšč. 8 (1959), 121–153 (Russian). MR 0114139
- [11] I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221–265. MR 0045133
- [12] I. E. Segal, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc. 3 (1952), 13–15. MR 0051240, https://doi.org/10.1090/S0002-9939-1952-0051240-5
- [13] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, at the Clarendon Press, 1946 (German). MR 0019765
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.57
Retrieve articles in all journals with MSC: 22.57
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1961-0172962-1
Article copyright:
© Copyright 1961
American Mathematical Society