Algebras of holomorphic functions on one-dimensional varieties
Author:
Hugo Rossi
Journal:
Trans. Amer. Math. Soc. 100 (1961), 439-458
MSC:
Primary 46.55
DOI:
https://doi.org/10.1090/S0002-9947-1961-0131164-5
MathSciNet review:
0131164
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Richard Arens, The closed maximal ideals of algebras of functions holomorphic on a Riemann surface, Rend. Circ. Mat. Palermo (2) 7 (1958), 245–260. MR 105501, DOI https://doi.org/10.1007/BF02849323 W. L. Baily, Several complex variables, University of Chicago notes, 1957. H. Behnke, Généralisation du théorème de Runge pour des fonctions multiformes de variables complexes, Colloque sur les fonctions de plusieurs variables, Paris, 1953.
- Errett Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958), 29–50. MR 96818 ---, Séminaire H. Cartan de l’Ecole Normale Supérieure, 1951-1952 (chapters VII-XX, Math. Dept. of M. I. T.).
- Hans Grauert and Reinhold Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245–318 (German). MR 103285, DOI https://doi.org/10.1007/BF01362011
- K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta Math. 103 (1960), 217–241. MR 117540, DOI https://doi.org/10.1007/BF02546357
- Kiyoshi Oka, Sur les fonctions analytiques de plusieurs variables. VIII. Lemme fondamental, J. Math. Soc. Japan 3 (1951), 204–214 (French). MR 44646, DOI https://doi.org/10.2969/jmsj/00310204
- Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370 (German). MR 92996, DOI https://doi.org/10.1007/BF01342886 H. Royden, On a theorem of Wermer’s, Stanford University Applied Math. and Stat. Lab. Technical Report no. 9, 1959.
- John Wermer, Subalgebras of the algebra of all complex-valued continuous functions on the circle, Amer. J. Math. 78 (1956), 225–242. MR 84729, DOI https://doi.org/10.2307/2372513
- John Wermer, Rings of analytic functions, Ann. of Math. (2) 67 (1958), 497–516. MR 96817, DOI https://doi.org/10.2307/1969870
- John Wermer, The hull of a curve in $C^{n}$, Ann. of Math. (2) 68 (1958), 550–561. MR 100102, DOI https://doi.org/10.2307/1970155
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.55
Retrieve articles in all journals with MSC: 46.55
Additional Information
Article copyright:
© Copyright 1961
American Mathematical Society