On difference methods for the solution of a Cauchy problem for a hyperbolic equation with data on a parabolic line
Author:
Hajimu Ogawa
Journal:
Trans. Amer. Math. Soc. 100 (1961), 395-403
MSC:
Primary 35.70; Secondary 35.52
DOI:
https://doi.org/10.1090/S0002-9947-1961-0139846-6
MathSciNet review:
0139846
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Hajimu Ogawa, On difference methods for the solution of a Tricomi problem, Trans. Amer. Math. Soc. 100 (1961), 404–424. MR 139845, DOI https://doi.org/10.1090/S0002-9947-1961-0139845-4
- H. F. Weinberger, A maximum property of Cauchy’s problem, Ann. of Math. (2) 64 (1956), 505–513. MR 92076, DOI https://doi.org/10.2307/1969598
- M. H. Protter, A maximum principle for hyperbolic equations in a neighborhood of an initial line, Trans. Amer. Math. Soc. 87 (1958), 119–129. MR 97611, DOI https://doi.org/10.1090/S0002-9947-1958-0097611-2
- M. H. Protter, The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Canad. J. Math. 6 (1954), 542–553. MR 64269, DOI https://doi.org/10.4153/cjm-1954-059-x
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.70, 35.52
Retrieve articles in all journals with MSC: 35.70, 35.52
Additional Information
Article copyright:
© Copyright 1961
American Mathematical Society