Concentric solid tori in the $3$-sphere
HTML articles powered by AMS MathViewer
- by C. H. Edwards
- Trans. Amer. Math. Soc. 102 (1962), 1-17
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140091-X
- PDF | Request permission
References
- P. S. Aleksandrov, Combinatorial topology. Vol. 1, Graylock Press, Rochester, N.Y., 1956. MR 0076324 J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145β158. MR 61377, DOI 10.2307/1969836 β, ${E^3}$ does not contain uncountably many mutually exclusive wild surfaces, Abstract 63-801t, Bull. Amer. Math. Soc. 63 (1957), 404.
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105β139. MR 107229, DOI 10.4064/fm-47-1-105-139 C. H. Edwards, Concentric tori in the three-sphere, doctoral dissertation, University of Tennessee, December, 1960.
- C. H. Edwards Jr., Concentric tori in the $3$-sphere, Bull. Amer. Math. Soc. 67 (1961), 220β222. MR 123304, DOI 10.1090/S0002-9904-1961-10577-6 β, A characterization of tame curves in the 3-sphere, Abstract 573-32, Notices Amer. Math. Soc. 7 (1960), 875.
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12β34. MR 91457, DOI 10.1090/S0002-9947-1955-0091457-4
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131β286 (German). MR 72482, DOI 10.1007/BF02392437
- Horst Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), no.Β 3, 57β104 (German). MR 0031733
- G. T. Whyburn, Non-separated cuttings of connected point sets, Trans. Amer. Math. Soc. 33 (1931), no.Β 2, 444β454. MR 1501599, DOI 10.1090/S0002-9947-1931-1501599-5
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 102 (1962), 1-17
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140091-X
- MathSciNet review: 0140091