Extension problem for quasi-additive set functions and Radon-Nikodym derivatives
HTML articles powered by AMS MathViewer
- by Lamberto Cesari
- Trans. Amer. Math. Soc. 102 (1962), 114-146
- DOI: https://doi.org/10.1090/S0002-9947-1962-0142724-0
- PDF | Request permission
References
- Lamberto Cesari, Quasi-additive set functions and the concept of integral over a variety, Trans. Amer. Math. Soc. 102 (1962), 94–113. MR 142723, DOI 10.1090/S0002-9947-1962-0142723-9
- Lamberto Cesari, Surface area, Annals of Mathematics Studies, No. 35, Princeton University Press, Princeton, N. J., 1956. MR 0074500
- L. Cesari and L. H. Turner, Surface integral and Radon-Nikodym derivatives, Rend. Circ. Mat. Palermo (2) 7 (1958), 143–154. MR 104781, DOI 10.1007/BF02854524
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Hans Hahn and Arthur Rosenthal, Set Functions, University of New Mexico Press, Albuquerque, N.M., 1948. MR 0024504
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148, DOI 10.1515/9781400877577 E. Čech, Sur la dimension des espaces parfaitement normaux, Bull. Intern. Acad. Bohème vol. 33 (1932) pp. 38-55. P. Alexandroff and P. Urysohn, Mémoire sur les ensembles compacts, Verh. Acad. Amsterdam vol. 14 (1928-1929), pp. 93. N. Vedenissoff, Sur les fonctions continues dans les espaces topologiques, Fund. Math. vol. 27 (1936) pp. 234-238. T. Nishiura, Analytic theory of continuous transformations, Thesis, Purdue University, 1959.
- L. H. Turner, Measures induced on a $\sigma$-algebra by a surface, Duke Math. J. 26 (1959), 501–509. MR 106985, DOI 10.1215/S0012-7094-59-02647-X
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 102 (1962), 114-146
- MSC: Primary 28.80
- DOI: https://doi.org/10.1090/S0002-9947-1962-0142724-0
- MathSciNet review: 0142724