DERIVATIONS ON \(p \)-ADIC FIELDS\(^{(1)} \)

BY

NICKOLAS HEEREMA

1. Introduction. Let \(K \) be a \(p \)-adic field as defined in Schilling [2, p. 226, Definition 2] with exponential valuation \(V \) and associated place \(H \). Let \(k \) be the residue field of \(K \) and \(R_K \) the ring of integers of \(K \). In this paper we investigate the following connection between derivations on \(K \) into \(K \) and derivations on \(k \) into \(k \). Let \(D \) be an integral derivation on \(K \), i.e., one which maps integers onto integers. The mapping \(d \) on \(k \) given by \(d[H(a)] = H[D(a)] \), for all \(a \in R_K \) is a derivation on \(k \) and we say that \(d \) is induced by \(D \).

An integral derivation on \(K \) is an analytic derivation, that is, it is a continuous map in the valuation topology. The following is an almost immediate consequence of the definition:

Proposition 1. A derivation \(D \) on \(K \) is analytic if and only if for some positive integer \(n \) and every \(a \in R_K \), \(V[D(a)] \geq -n \).

If \(D \) is a derivation on \(K \) then so is \(p^rD \) where \(r \) is an integer. Thus \(K \) possesses a derivation \(D \) which maps \(R_K \) into \(R_K \) but not into \((p) \), the maximal ideal in \(R_K \), if and only if \(K \) possesses a nontrivial analytic derivation. Such a derivation induces a nontrivial derivation on \(k \). However \(k \) possesses a nontrivial derivation (into \(k \)) if and only if \(k \) is not perfect, so we have

Proposition 2. If \(k \) is perfect \(K \) has no nontrivial analytic derivations.

In this paper we show that, not only is the converse of Proposition 2 true, but every derivation on \(k \) is induced by a derivation on \(K \) (Theorem 1). Thus if \(k \) is not perfect \(K \) possesses a nontrivial analytic derivation which fact is used to prove Theorem 2. This theorem asserts the converse of a theorem of Teichmüller [3, p. 144] which states that if \(K' \) is a \(p \)-adic field [2, p. 227, Definition 3] with the same residue field \(k \) then \(K \) is uniquely embedded in \(K' \) if \(k \) is perfect.

2. Construction of analytic derivations. Let \(S = \{s_\alpha\}_{\alpha \in I} \) be a set of integers in \(K \) with the property that \(S' = \{\bar{s}_\alpha\}_{\alpha \in I} \), where \(\bar{s}_\alpha = H(s_\alpha) \), is a \(p \)-basis for \(k \). It is well known that, given any set of elements \(\{\bar{u}_\alpha\}_{\alpha \in I} \) in \(k \), there is one and only one derivation \(d \) on \(k \) such that \(d(\bar{s}_\alpha) = \bar{u}_\alpha \) for all \(\alpha \in I \), the indexing set of \(S \). \(S \) is a purely transcendental set over \(k_0 \) the maximal perfect subfield of \(k \). Every derivation on \(k_0(S) \) into \(k \) has one and only one extension to \(k \).

Let \(K_0 \) be the \(p \)-adic subfield of \(K \) having residue field \(k_0 \). Again, \(S \) is a purely transcendental set over \(K_0 \). Let \(d \) be an arbitrary derivation on \(k_0(S) \)

\(^{(1)}\) This research was supported by NSF G-11292.

Presented to the Society, December 12, 1960; received by the editors March 14, 1961.
DERIVATIONS ON p-ADIC FIELDS

into k and let S_1 be a proper subset of S. Now if D is an integral K_0 derivation (trivial on K_0) on $K_1 = K_0(S_1)$ into K which induces d restricted to $k_1 = K_0(S_1)$ and $s_\alpha \in S - S_1$, then we can extend D to an integral derivation D' on $K_1(s_\alpha)$ which induces d on $k_1(s_\alpha)$ by choosing $D'(s_\alpha)$ so that $H(D'(s_\alpha)) = d(s_\alpha)$. By a straightforward argument based on Zorn’s Lemma we conclude that every derivation d on $k_0(S)$ into k is induced by a K_0 derivation on $K_0(S)$ into K.

Thus the problem of finding a derivation on K which induces a given derivation on k is reduced to the problem of extending an integral K_0 derivation on $K_0(S)$ into K to an integral derivation on K. This is done in a way suggested by the usual proof [4, p. 128] of the fact that if L and F are fields such that L is a separable extension of F then any derivation on F can be extended to a derivation on L.

The fields $k_0(S)$ and k_0 are linearly disjoint over $[k_0(S)]_p = k_0(S_0)$ by virtue of the fact that S is a p-basis for k. Thus if the set $\{u_\beta\}_{\beta \in J}$ is a basis for k_0 as a vector space over $k_0(S)$ then $\{u_\beta\}_{\beta \in J}$ is also a basis for $k_0(S) [k_0]$ over $k_0(S)$. But $k_0(S) [k_0] = k$. Thus $\{u_\beta\}_{\beta \in J}$ is a basis for k over $k_0(S)$. Hence $\{u_\beta\}_{\beta \in J}$ is a basis for k_0 over $k_0(S)$. Repeating the argument n times we conclude that the set $\{u_\beta^n\}_{\beta \in J}$ is a basis for k over $k_0(S)$.

For each $\beta \in J$ we choose $u_\beta \in K$ so that $H(u_\beta) = u_\beta$. The set $U_n = \{u_\beta^n\}_{\beta \in J}$ is clearly linearly independent over $K_0(S)$. Moreover, each coset of the ideal (p^n) in R_K contains an element of the form $\sum a_\alpha u_\alpha^n$ where the a_α are integers in $K_0(S)$ (unless otherwise indicated \sum will indicate a finite sum in the elements of U_n with coefficients which are integers in $K_0(S)$). This follows from the fact that H maps the linear space spanned by the set U_n over $K_0(S)$ onto k.

Let D denote an arbitrary integral derivation on $K_0(S)$ into K. We define a mapping D_n on $R_K/(p^n)$ as follows. Let $x + (p^n)$ be an arbitrary element of $R_K/(p^n)$. There is then an element $\sum a_\alpha u_\alpha^n$ in the set $x + (p^n)$. We let $D_n(x + (p^n)) = \sum D(a_\alpha)u_\alpha^n + (p^n)$. D_n is a well-defined mapping since if the element $\sum b_\alpha u_\alpha^n$ is in the coset $x + (p^n)$ then for all α, $b_\alpha \equiv a_\alpha \mod p^n$, and $D(a_\alpha) \equiv D(b_\alpha) \mod p^n$, since D is integral.

In order to verify that D_n is a derivation we must show that the coset $u_\alpha^n u_\beta^n + (p^n)$ contains an element of a certain form. To this end we use the following:

LEMMA 1. For all positive integers r and m

\[
\left[\sum c_\alpha u_\alpha^r \right]^{p^m} = \sum_{i=0}^{m-1} p^i \sum s_{i,\alpha} c_\alpha^{p^m-i} u_\alpha^{p^m+i}, \quad \mod p^m,
\]

where $s_{i,\alpha}$ is a rational integer and c_α is an integer in $K_0(S)$ for all i and α.

Proof. Let $[p^m, q]$ denote an ordered partition of the integer p^m into q nonnegative summands and let $C[p^m, q]$ represent the corresponding multinomial coefficient. If p^* is the highest power of p to divide the integers in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
$[p^m, q]$ then p^{m-q} divides $c[p^m, q]$ i.e. $c[p^m, q] = p^{m-q}c'[p^m, q]$. Thus, in a multinomial expansion to the power p^m each term having $c[p^m, q]$ as a coefficient is a p^q power.

With these preliminaries we proceed to the proof of (1) by induction on m. Clearly (1) holds for $m = 1$. We assume then that (1) holds for $m < n$. Now

$$[\sum c_{a\alpha} x^a]^{p^m} = \sum c_{a\alpha} x^{p^{m-n}} + \sum_{i=1}^{n-1} p^{i} \sum c'[p^n, q] A[p^n, q], \mod p^n,$$

by the above remarks on a multinomial expansion to the power p^n. Now,

$$A[p^n, q] = \sum c_{[p^n, q], a\alpha}^{p^{m-i}}, \mod p,$$

and hence

$$A[p^n, q] = [\sum c_{[p^n, q], a\alpha}^{p^{m-i}}]^{p^{n-i}}, \mod p^{n-i}.$$

However, by the induction hypothesis

$$[\sum c_{[p^n, q], a\alpha}^{p^{m-i}}]^{p^{n-i}} = \sum_{i=0}^{n-i-1} p^{i} \sum s_{[p^n, q], i, c[p^n, q], i, a\alpha}^{p^{m-i}}, \mod p^{n-i}.$$

Substituting (3) for $A[p^n, q]$ in (2) yields an expression of the form (1) and the lemma is proved.

Lemma 2. The mapping D_n is a derivation on $R_K/(p^n)$.

Proof. D_n is clearly an additive mapping. In order to verify that $D_n(xy) = xD_n(y) + yD_n(x)$ we proceed as follows. Let $x = \sum a_{a\alpha} u^a + (p^n)$ and $y = \sum b_{b\beta} u^b + (p^n)$. Then, $xy = \sum a_{a\alpha} b_{b\beta} u^{a+b} + (p^n)$. But $u_{a\alpha} u_{b\beta} = \sum c_{a\alpha} c_{b\beta} \mod p$, and hence, $u_{a\alpha} u_{b\beta} = \sum c_{a\alpha} c_{b\beta} u^{a+b} \mod p^n$. Using Lemma 1 with $r = 0$ we have

$$u_{a\alpha} u_{b\beta} = \sum_{i=0}^{n-i-1} p^{i} \sum s_{a\alpha, i, c_{a\alpha}, i, c_{b\beta}, i, c_{b\beta}}^{p^{m-i}}, \mod p^n,$$

or,

$$xy = \sum a_{a\alpha} b_{b\beta} \sum_{i=0}^{n-i-1} p^{i} \sum s_{a\alpha, i, c_{a\alpha}, i, c_{b\beta}, i, c_{b\beta}}^{p^{m-i}} + (p^n).$$

Thus,

$$D_n(xy) = \sum D(a_{a\alpha} b_{b\beta} s_{a\alpha, i, c_{a\alpha}, i, c_{b\beta}, i, c_{b\beta}}^{p^{m-i})} u^a + (p^n),$$

$$= \sum [a_{a\alpha} D(b_{b\beta}) + b_{b\beta} D(a_{a\alpha})] s_{a\alpha, i, c_{a\alpha}, i, c_{b\beta}, i, c_{b\beta}}^{p^{m-i}} + (p^n),$$

$$= \sum [a_{a\alpha} D(b_{b\beta}) + b_{b\beta} D(a_{a\alpha})] u^a u^b + (p^n),$$

$$= xD_n(y) + yD_n(x).$$
We define a mapping D on R_K as follows. $D(x) = \bigcap_{n=1}^\infty D_n(x + (p^n))$ and we assume that u_1 and u_1 are the unity elements of k and K.

Lemma 3. The mapping D on R_K is a derivation and its restriction to $R_K \cap K_0(S)$ is D.

Proof. We first show that for all n, $D_n[x + (p^n)] \supset D_{n+1}[x + (p^{n+1})]$. Let $u_p = \sum c_n u_n, \mod p$. Thus $u_p^{p+1} = \left[\sum c_n u_n \right]^{p+1}, \mod p^n$. Or, using Lemma 1,

$$u_a^{p^n} = \sum_{i=0}^{n-1} \sum_{i=0}^n s_{a,i,\beta} c_a s_{a,i,\beta} u_\beta, \mod p^n.$$

We have $x + (p^{n+1}) = \sum b_n u_n^{p^{n+1}} + (p^{n+1})$ and, by (4),

$$x + (p^i) = \sum b_n \beta a_{i,\beta} s_{a,i,\beta} u_\beta + (p^i).$$

Now

$$D_n[x + (p^n)] = \sum D(b_n) s_{a,i,\beta} c_a s_{a,i,\beta} u_\beta + (p^n),$$

$$= \sum D(b_n)\beta a_{i,\beta} s_{a,i,\beta} u_\beta + (p^n),$$

$$= \sum D(b_n) u_a^{p^{n+1}} + (p^n).$$

Also, we have

$$D_{n+1}[x + (p^{n+1})] = \sum D(b_n) u_n^{p^{n+1}} + (p^{n+1}),$$

and it follows that $D_{n+1}[x + (p^{n+1})]$ is a subset of $D_n[x + (p^n)]$. The cosets $\{D_n[x + (p^n)]\}$ form a nested sequence. Thus the mapping D is a derivation mod p^n for all positive integers n. It follows that D is a derivation, and it is obviously integral.

It remains to show that D agrees with D on $K_0(S) \cap R_K$. Let $a \in K_0(S) \cap R_K$. Then $D_n[a + (p^n)] = D_n[au_a^{p^n} + (p^n)] = D(a) + (p^n)$. Hence $D(a) = \bigcap_{n=1}^\infty D_n[a + (p^n)] = D(a)$.

Now we started this construction with an arbitrary integral derivation on $K_0(S)$. Extending D to K the quotient field of R_K we conclude that every integral derivation on $K_0(S)$ has an integral extension to K.

Theorem 1. Every derivation on k is induced by a derivation on K.

Proof. Each derivation d on k is the unique extension of a derivation d' on $k_0(S)$ into k. There exists a derivation D on $K_0(S)$ into K which induces d'. But we have shown that D can be extended to an integral derivation on K which induces a derivation on k which is in turn an extension of d'.

Corollary. K possesses no nontrivial analytic derivations if and only if k is perfect.
Proof. If \(K \) possesses a nontrivial analytic derivation, it then has an integral derivation which induces a nontrivial derivation on \(k \), hence \(k \) is not perfect. If \(k \) is not perfect there is a nontrivial derivation \(d \) on \(k \), and the result follows from the theorem.

3. An application. A well-known theorem of Teichmüller [3, p. 144] states that if \(K' \) is a \(p \)-adic field with residue field \(k \), then \(K \) is uniquely embedded in \(K' \) if \(k \) is perfect.

We will show that if \(K \) possesses a nontrivial integral derivation then \(K \) is not uniquely embedded in \(K' \).

Let \(R_K[[x]] \) represent the power series ring in \(x \) over \(R_K \). Then \(R_K \), is a homomorphic image of \(R_K[[x]] \) with kernel \(I=(p-x^n) \) where \(n \) is a unit and \(n \) is the ramification index of \(K' \) [1, Theorem 1].

Let \(D \) represent a nontrivial derivation on \(R_K \) such that for \(a \in R_K, V(D(a)) \geq 2 \) and equality is obtained for some element in \(R_K \). The mapping \(\tau \) given by

\[
\tau(a) = \sum_{i=0}^{n} (D^i(a)/i!)x^i \quad (D^0 \text{ being the identity map})
\]

is an isomorphism of \(R_K \) into \(R_K[[x]] \) and, moreover, \(V(D^i(a)/i!) > i \) for all integers \(i > 0 \). Let \(\xi \) denote the natural map of \(R_K[[x]] \) onto \(R_K[[x]]/I \). Then \(\xi \) is an isomorphism and we wish to show that \(\xi \tau(R_K) \) contains cosets not of the form \(b+I \) for \(b \in R_K \). Equivalently, we wish to show that for some \(a \in R_K \) there is no \(b \in R_K \) such that \(\sum_{i=0}^{n} (D^i(a)/i!)x^i \) is congruent to \(b \), mod \(I \). We consider then the equation

\[(5) \quad \sum_{i=0}^{n} \frac{D^i(a)}{i!} x^i = b + \left(p - x^n \sum_{i=0}^{n} u_i x^i \right) \sum_{i=0}^{n} c_i x^i \]

where \(u = \sum_{i=0}^{n} u_i x^i \) and \(u_0 \) is a unit in \(R_K \).

In order for this equation to have a solution \(c = \sum_{i=0}^{n} c_i x^i \) for some \(b \) we must have

\[a = b + p c_0, \]

\[\frac{D^i(a)}{i!} = p c_i, \quad i = 1, \ldots, n - 1, \]

\[\frac{D^{n+i}(a)}{(n+j)!} = p c_{n+j} - \sum_{k=0}^{j} (u_k c_{j-k}), \quad j = 0, 1, \ldots. \]

We choose \(a \) so that \(V(D(a)) = 2 \) and, hence \(V(c_1) = 1 \). Assume first that \(V(c_0) \leq 1 \). Since \(V(D^i(a)/i!) > n \) it follows that \(V(p c_n) = V(c_0) = 0 \) and \(V(c_n) = 1 \). Necessarily \(V(c_i) > 1 \) for \(1 < i < n \). It follows by letting \(j = n \) in (6) that \(V(p c_n) = V(c_n) \) which is a contradiction since \(c_n \in R_K \). Assume next that \(V(c_0) > 1 \). Again, letting \(j = 1 \) in (6) we conclude that \(V(p c_{n+1}) = V(c_1) \) or \(V(c_{n+1}) = 0 \). As before, it follows that \(V(p c_{n+1}) = V(c_{n+1}) \) which is a contradiction. Thus equation (5) has no solution \(\sum_{i=0}^{n} c_i x^i \) for any \(b \in R_K \) and it follows that the embedding \(\xi \tau(R_K) \) in \(R_K[[x]]/I \) is distinct from the canonical embedding. It follows that the quotient field of \(\xi \tau(R_K) \) is distinct.
from the canonical embedding of K in the quotient field of $R_K[[x]]/I$. Appealing to Theorem 1 for the existence of the derivation D if k is not perfect we have

Theorem 2. K is uniquely embedded in K' if and only if k is perfect.

We note in conclusion that the unique embedding of K in K' in case k is perfect can be proved by an argument which depends directly on the fact that k possesses no nontrivial derivations [1, p. 493].

References

Florida State University,
Tallahassee, Florida