The module type of a ring
HTML articles powered by AMS MathViewer
- by W. G. Leavitt
- Trans. Amer. Math. Soc. 103 (1962), 113-130
- DOI: https://doi.org/10.1090/S0002-9947-1962-0132764-X
- PDF | Request permission
References
- C. J. Everett, Vector spaces over rings, Bull. Amer. Math. Soc. 48 (1942), 312–316. MR 6147, DOI 10.1090/S0002-9904-1942-07667-1
- William G. Leavitt, Modules over rings of words, Proc. Amer. Math. Soc. 7 (1956), 188–193. MR 77520, DOI 10.1090/S0002-9939-1956-0077520-9
- W. G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8 (1957), 322–328. MR 83986, DOI 10.1090/S0002-9939-1957-0083986-1
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601
- Jean Dieudonné, Sur le nombre de dimensions d’un module, C. R. Acad. Sci. Paris 215 (1942), 563–565 (French). MR 10257
- W. G. Leavitt, Finite dimensional modules, An. Acad. Brasil. Ci. 27 (1955), 241–250. MR 74397
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
- M. P. Drazin, A generalization of polynomial identities in rings, Proc. Amer. Math. Soc. 8 (1957), 352–361. MR 84495, DOI 10.1090/S0002-9939-1957-0084495-6
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 103 (1962), 113-130
- MSC: Primary 16.40
- DOI: https://doi.org/10.1090/S0002-9947-1962-0132764-X
- MathSciNet review: 0132764