On necessary and sufficient conditions for the convergence of the renewal density
HTML articles powered by AMS MathViewer
- by Walter L. Smith
- Trans. Amer. Math. Soc. 104 (1962), 79-100
- DOI: https://doi.org/10.1090/S0002-9947-1962-0137178-4
- PDF | Request permission
References
- David Blackwell, Extension of a renewal theorem, Pacific J. Math. 3 (1953), 315–320. MR 54880
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR 0031582
- Willy Feller, On the integral equation of renewal theory, Ann. Math. Statistics 12 (1941), 243–267. MR 5419, DOI 10.1214/aoms/1177731708
- William Feller and S. Orey, A renewal theorem, J. Math. Mech. 10 (1961), 619–624. MR 0130721
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR 0062975
- Walter L. Smith, Asymptotic renewal theorems, Proc. Roy. Soc. Edinburgh Sect. A 64 (1954), 9–48. MR 60755
- Walter L. Smith, Extensions of a renewal theorem, Proc. Cambridge Philos. Soc. 51 (1955), 629–638. MR 71660, DOI 10.1017/s030500410003070x —, Contributions to Probability and Statistics, pp. 396-413, Stanford Univ. Press, Stanford, Calif., 1960.
- Walter L. Smith, On some general renewal theorems for nonidentically distributed variables, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 467–514. MR 0133890
- Sven Täcklind, Fourieranalytische Behandlung vom Erneuerungsproblem, Skand. Aktuarietidskr. 28 (1945), 68–105 (German). MR 13838, DOI 10.1080/03461238.1945.10404920 E. C. Titchmarsh, Theory of fourier integrals, 2nd. ed., Oxford University Press, Oxford, 1948.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 104 (1962), 79-100
- MSC: Primary 60.70
- DOI: https://doi.org/10.1090/S0002-9947-1962-0137178-4
- MathSciNet review: 0137178