Summability $C$ of series of surface spherical harmonics
HTML articles powered by AMS MathViewer
- by Aaron Siegel
- Trans. Amer. Math. Soc. 104 (1962), 284-307
- DOI: https://doi.org/10.1090/S0002-9947-1962-0138912-X
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 108 (1963), 547-548.
References
- George Boole, Calculus of finite differences, Chelsea Publishing Co., New York, 1957. Edited by J. F. Moulton 4th ed. MR 0115025 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. 2, McGraw-Hill, New York, 1953.
- Leopold Fejér, Über die Summabilität der Laplaceschen Reihe durch arithmetische Mittel, Math. Z. 24 (1926), no. 1, 267–284 (German). MR 1544764, DOI 10.1007/BF01216783
- T. H. Gronwall, Über die Laplacesche Reihe, Math. Ann. 74 (1913), no. 2, 213–270 (German). MR 1511760, DOI 10.1007/BF01456041
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, London, 1931.
- Walter Rudin, Uniqueness theory for Laplace series, Trans. Amer. Math. Soc. 68 (1950), 287–303. MR 33368, DOI 10.1090/S0002-9947-1950-0033368-1
- Victor L. Shapiro, Localization on spheres, Trans. Amer. Math. Soc. 86 (1957), 212–219. MR 90676, DOI 10.1090/S0002-9947-1957-0090676-2
- Victor L. Shapiro, The symmetric derivative on the $(k-1)$-dimensional hypersphere, Trans. Amer. Math. Soc. 81 (1956), 514–524. MR 76906, DOI 10.1090/S0002-9947-1956-0076906-0
- Wolfgang J. Sternberg and Turner L. Smith, The Theory of Potential and Spherical Harmonics, Mathematical Expositions, No. 3, University of Toronto Press, Toronto, Ont., 1944. MR 0011513, DOI 10.3138/9781487574178 A. Zygmund, Trigonometrical series, Warsaw, 1935.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 104 (1962), 284-307
- MSC: Primary 40.32
- DOI: https://doi.org/10.1090/S0002-9947-1962-0138912-X
- MathSciNet review: 0138912