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1. Introduction. Our objective in this paper is to set forth a simple but

very useful fiber homotopy extension theorem in the category of fiber spaces

in the sense of Hurewicz [S]. We will give several applications of the theorem

as well as point out that a related theorem used by A. T. Lundell in [7] is

false. Fortunately, the theorem as we give it is strong enough to imply the

validity of Lundell's techniques. Throughout this paper all fiber spaces

Œ=(£, p, B) will denote Hurewicz fiber spaces with total space E, base space

B, and fiber map p: E-^B. Fb = p~1(b) will denote the fiber over bCB. B will

will also be assumed O-connected so that all fibers are of the same homotopy

type [1].

Finally, all fiber spaces and lifting functions [S] will be assumed to be

regular, i.e., if üp= {(e, ui)\p(e) =w(0)} CEXB1, then the lifting functions

A: Qp—»£7 will have the additional property that A(e, p(e)) = e, where p(e) is

identified with the constant path at the point p(e)CB. Regularity is no re-

striction if B is metric or if î is locally trivial and B is paracompact [5].

2. A fiber homotopy extension theorem.

Theorem (2.1) (FHET). Let 5= (£, p, B) be a fiber space and let (A, .4)

be a metric pair (A closed in A). Suppose there exists a map G: (Ax{0J)

U(,4X7)->£ such that pG(x, t)=pG(x, 0), xCA, 0g2gl. Then if either E is
an ANR(2) or (A, A) is an ANR pair, G can be extended to a map 77: AX7—>E

such that pH(x, t) = pH(x, 0), x£A, 0^/^l.

Proof. Using a suitable homotopy extension theorem G can be extended

to a map G':AX7—>£. G' can be regarded as a map A—Œ1. For a££/,

2 £7, let a¡££7 be the path given by

at(s) = a((i - s)t),       0 ^ 5 ^ 1.

Then, a0(s) =a(0), ai(s) =a(l—s), at(0) =a(t), «i(l)=a(0). Let A be a lifting

function for í and define a homotopy H: AX7—»£ by

H(x, t) = A(G'(x)(t), p(G'(x))t)(l).

77(x, 0)=A(G'(x)(0), p(G'(x))o)(l) = G'(x)(0) = G(x, 0), since A is regular. If

x£j4, then p((G'(x))t)(s)=pG(x, 0) and again by regularity 77(x, t) = G(x, /).
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Finally, pH(x, t)=p((G'(x))t)(l)=pG(x, 0)=pH(x, 0), and H is the required

map.

Let 5=(E, />, 73) be a fiber space and let X be an arbitrary topological

space. Two maps h, g: X—*E such that pg = ph are said to be fiber homotopic

(h~/g) if there is a map 77: XXl-^E such that H(x, 0)=h(x), H(x, l)=g(x)

and pH(x, t) = h(x) =g(x), 0£t£l.
In terms of the above notation the FHET can be restated as follows:

(2.2) FHET. Let 5 = (E, p, B) be a fiber space and let (X, A) be a metric

pair. Suppose that either E is an ANR or (X, A) is an ANR pair. Further-

more, suppose h~/g: A-+E and h is extendable to a map h': X-+E. Then g is

extendable to a map g' : X-^E such that h'~fg'.

The theorem should be compared with Theorem 2.1 of [2].

In [7, Theorem 2.1] A. T. Lundell states the following theorem and indi-

cates that the proof is a slight modification of the proof of a suitable covering

homotopy theorem.

Theorem (2.3). Let ?=(£, />, 73) be a locally trivial fiber space, let X be

locally compact and paracompact, and let A be a closed subset of X. Suppose

f:X—*E and h: XXI-^B are such that pf=h\Xx{o}. Suppose further that
there is a "partial lifting" of h on A, i.e., a map h': A XI—^E such that ph'

= h\AXl, and h'\Ax{0} =f\A. Then there exists a map ïi:XXI—*E such

thatpl = h, /tlXxfo} =f and h\AXl = h'.

It is easy to see that such a theorem implies that all spaces have the

homotopy extension property with respect to locally compact, paracompact

pairs (X, A) as follows. Let E denote any topological space, 73 a single point

and /»: E—»73 the constant map. (E, p, 73) is clearly a locally trivial fiber space.

Now if h': (XX{0})VJ(AXI)-^E is given, ph' is clearly extendable to

h: XXI—*B. Applying the above theorem, h' is extendable to h: XXI—>E.

Hence, E has the homotopy extension property with respect to (X, A). This

is clearly false since there are numerous examples of spaces which do not have

the homotopy extension property with respect to compact pairs. We see

here also that conditioning the base 73 in the above theorem is of no conse-

quence. We can, however, prove the following theorem which follows easily

from FHET and which is sufficient for the material in [7].

Theorem (2.4). Let 3 = (E, p, B) be a fiber space and (X, A) a metric pair.

Suppose that E is an ANR or that (X, A) is an ANR pair. Suppose further

that there are maps f: (XX {o})\J(A X7)->£ and h:XXl->B such that

pf=h\ (XX {o})\J(A X7). Then, there exists a map f: XXl—>E which is an

extension of f and such that pf=h.

Proof. Let hxEB! and fxEE1 be the paths defined by

hx(t) = *(*, t),       x G X, 0 g t ¿ 1,

Mt) =f(x,t),     xeA, ogíái.
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Let A be a lifting function for í and define a map h': XXI—>£ by

h'(x,t) = A(f(x,0),hx)(t).

Then, h'(x, 0) =/(x, 0), and if xCA, h'(x, t)=A(fx(0), pfx)(t) so that by
Proposition 1, [l], there is a homotopy 77: (A XI) X7—>£ with the following

properties :

(1) 77(x, t, 0) = h'(x, t),

(2) H(x,t,l)=f(x,t),

(3) 77(x, 0, s) = h'(x, 0) = f(x, 0),

(4) pH(x,l,s) = pH(x, t).

Define a map 77': (A XI) X7U(AX {o}) X7^£ by

H'(x, I, s) = H(x, t,s),       x £ A, 0 g t, s g 1,

H'(x,0,s) =f(x,0), XÇ.A, OsSfál.

Applying the FHET using the pair (AX7, (¿ X7)U(AX {o})), we obtain

a map /: XXI—*£, which is an extension of/, and which satisfies the relation

pf(x, t)=ph'(x, t) =h(x, t). This proves the theorem.

Let us recall also the definition of a locally trivial fiber subspace. Let

$= (£, p, B, F) and ï' = (£', p', B, F') be locally trivial fiber spaces over the

same base B. ST' is called a locally trivial fiber subspace of ff provided £' ££,

p' = p| £ and for each x£P there is an open set U and a homeomorphism of

pairs fa: (UXF, UXF')-^(p'l(U), p'~l(U)) such that p<pv(b, z)=&, (Ö, z)

CUXF.
Example. Let ÏF=(£, £, B, F) denote a locally trivial fiber space with

fiber F a manifold. Suppose SF admits a cross section a and £' = £ —<r(B).

Then, if p' = p| £', <5' = (£', />', P, £') is a locally trivial fiber subspace of fj,
where F' is P minus a point.

An immediate consequence of the proof of the Uniformization Theorem of

Hurewicz [5] gives the following.

Theorem (2.5). If ï' = (£', p', B, F') is a locally trivial subspace of

tf=(E,p,B, F), then if B is paracompact í possesses a (regular) lifting function

A with the additional property that A(e', u) CE'1, whenever e'CE', i.e., A re-

stricted to î' serves as a (regular) lifting function for 'S'.

The following corollary is an immediate consequence of Theorem (2.5).

It should be compared with Corollary 2.2 of Lundell [7] which was "proven"

using the false Theorem (2.3).

Corollary (2.6). Let 5' = (£', p', B, F') denote a locally trivial fiber subspace

of 3= (E, p, B, F) with B paracompact. Let (A, A) denote a pair of topological

spaces (A need not be closed in X), f: (A, A)—>(£, £') and h: AX7—>P maps
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such that pf=h\Xx{0}. Then, there exists a map h: (XXI, A X7)->(£, E')

such that h\Xx{o} =/and ph = h.

Theorem (2.5) suggests the following definition.

Definition (2.6). If S=(E,p,B), S' = (E', />', 73) are (Hurewicz) fiber

spaces over the same base 73, then, S' is called a fiber subspace of S provided

E' EE, p' = p\E' and S admits a lifting function A with the additional prop-

erty that A(e', w) is a path in E' whenever e'EE'.

Thus, Theorem (2.5), states that if S' is a locally trivial fiber subspace of

S with common paracompact base 73, then S' is a fiber subspace of S.

Theorem (2.6). If S = (E, p, 73) and S' = (E't />', 73) are fiber spaces (Hure-

wicz) over the same base B with E' EE and />' = p\E', then 3' is a fiber subspace

of S whenever E is an ANR, 73 ¿5 metric and E' is closed in E.

Proof. Let flp= {(e, a)\p(e) = w(0)} EEXB1, Q,, = {(e', a) | p'(e') = «(0)}
CE'XB1, and A: ßp-»£7, A': üv.-*En (regular) lifting functions for S and

î', respectively. Furthermore, let W= {(e, co)Gñp|w = constant path at /»(e)}.

Then, if X = Q,XI, A = (ÜPX {0})U(JFX7)U(iy XI), (X, A) is a metric
pair with A closed in X. Define 77: X—>E by 77(e, co, t)=A(e, u)(t) and

g: A-*E by

g(e', co, t) = M(e', «)(<),        if (e', co) G Öp-, 0 á < á 1,

Ä(e, o», i) = e, if (e, co) G W, 0 ^ í g 1,

g(e, co, 0) = e, if («, co) G fip.

Then, if A = í7|^4, we have by Proposition 1 of [l], g~jh: A—*E. Thus, by

FHET (2.2), g is extendable to a map G: X—+E, such that G'^/77. Hence, if

we define

A"(e, co)(/) = G(e, co, /), (e, co, /) G ß* X 7,

A" is the required lifting function and 'S' is a fiber subspace of S.

Remark. Thus, Corollary (2.6), which is valid for S' a fiber subspace of

ÍF, is valid when S', S are locally trivial fiber spaces over the same metric space

B, provided E'CE and p'=p\E and if further E' is a closed subset of the

ANR£. There need not be in this situation, therefore, any connection be-

tween the local product structures of S and S', respectively.

It may be of interest to mention that the existence of a lifting function

which applies simultaneously to S and 3' as in Theorem (2.6) provides sim-

pler proofs in many situations. For example :

Theorem (2.7). Let S' = (£', />', 73) denote a fiber subspace ofS=(E, p, 73),
with respective fibers F' and F. Then, there is a spectral sequence associated with

a filtration of the singular G-chains, C*(E, E', G) whose Ei-term is naturally iso-

morphic to 77(73; 77X7^, F', G)) (local coefficients).
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Proof. Essentially word-for-word the argument given for the Leray-Serre

Theorem in [3] or [6].

Corollary (2.8) (Thom). Let SF=(£, p, B, F=Rn), denote an n-plane

bundle over a paracompact base B and let £' = £ —(0-section), F' = F— }0},

p' = p\E', then ÍJ'=(£', p', B, F') is a fiber subspace of 3. Hence, there is a

natural isomorphism

Hn+k(E, £'; G) « Hk(B, Hn(F, F'; G)),       k 2; - n

where local coefficients appear on the right. Hence, if iri(B) operates trivially on

H(F, F'; G), we have

Hn+k(E, £'; G) « 77*(P; G),       k^-n

e.g. if G = Z and we have an oriented bundle or if G = Z2.

Remark. Theorem (2.7) is, of course, valid when EF and ff' are fiber spaces

in the sense of Serre [8], provided the base B is common to both fJ and fJ',

£' ££ and p' —p\ £'. The proof in this case is more cumbersome.

3. Applications. As an immediate consequence of the FHET and its proof

we have the classical result:

Corollary (3.1). Let 3 = (E, p, B) be a fiber space and assume that E is an

ANR. Let A be a closed subset of B. Suppose a, a': A-+E are partial cross sec-

tions which are homotopic in the sense of [9, p. 167 ]. Then if a is extendable to a

full cross section, a' is also extendable.

Remark. The same result holds if (B, A) is an ANR pair.

The following Corollary is also immediate.

Corollary (3.2). Let 5 = (E,p,B)bea fiber space and let (X, A) bean arbi-

trary pair of spaces. If E has the homotopy extension property with respect to

(A, A) so does the fiber Fb, for every b(~B.

Let bo be a base point in B and let Q(P) be the space of loops based at

¿>o. If fJ=(£, p, B) is a fiber space over B, any lifting function A induces a

map <p: fi(P) X Fb<¡-^Fb<¡ given by

4>(ß, x) = A(x, ß)(l),       ß £ Ü(B), x £ Fbo.

<b is called the loop action induced by A and is uniquely determined up to a

homotopy class. Since A is regular, then <b(bo, x)=x, where 50 denotes the

constant loop at bo. Our next theorem has to do with the realization of loop

actions via lifting functions.

Theorem (3.3). Let i = (£, p, B) be a fiber space over a metric base B, with

fiber F=p~l(bo), and suppose that <p is a loop action induced by a lifting func-

tion A. Let <p' : fi(P) X F—>F be a map which is homotopic to <p and such that

<¡>'(b0, #) =#, x£P. Then, if E is an ANR there is a (regular) lifting function A'

for ï which induces <p'.
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Proof. By hypothesis there is a homotopy 77: Q(B)XFXI—>F such that

Ho = <p, Hi = (p'.
We first show that we can assume 77(è0, x, t)=x, O^i^l, x£P. Let

A = (Ü(B) XFX¡0J)U (Ü(B) XFX{l})KJ(ooXFXI)

and define a homotopy G: A X7—>P as follows.

G(ß, x, 0, s) = H(ß, x, 0) = 4>iß, x),

G(bo, x, t, s) = H(bo, x, (1 — s)t),

Giß, x, 1, s) = 77(/3, 77(6o, x, 1 - 5), 1)

= ^'08, 77(6o, *, 1 - s)),

ß£ß(P), x£P, 0^5, íál. Note that Gi(50, x, ¿) =x and that Go has an exten-

sion to all of Ü(B) XFXI, namely 77. By Corollary (3.2), Phas the homotopy

extension property with respect to metric pairs, and therefore, Gi can be ex-

tended to all of ß(P>)XPX7, giving a new homotopy with the required

property.

Now, let fl*= {(w, e) | (e, o))£ßp}, let B be the set of constant paths in B

and let K= (fi(P)XP)W(PX£)Piñ*. A is a closed subset of Q*. Define a

homotopy H': AX7—>£ as follows.

77'iß, x, t) = Hiß, x, t),       ß £ Ü(B), x £ P,

H'ib, e,t)=e,       e £ E, pie) = b.

77' is well-defined and continuous and the map H0: ß*—*E given by

770(o>, e) = Aie, co)(l)

is an extension of 770'. By the FHET, 77/ is extendable to all of 0* giving a

map Hi: fl*—>£ such that:

7Î! I 0(5) X F = <*>',

^(5, e) = «,        í(e) = J,

pHiiu, e) = co(l).

If w£P/, for every O^i^l define a new path co,£Pr by w,(/) =co(5í), OgíáL

Finally, the required (regular) lifting function A' which induces <p' is

given by
A'ie, a) is) = "Eiio., e),        0 ^ * ^ 1, («, «) £ 0„.

4. Further results. In [l, p. 7] the following question was raised:

Question. If (£, p, B) is a fiber space in which £ is separable metric and

B as well as all the fibers are separable metric ANR's, is E an ANR?

In this section we will show that the answer is affirmative if £ is finite

dimensional (Theorem 4.13), and more generally will consider the following

problem. Let (£, p, B) be a fiber space. If £ is an ANR what can be said
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about 73 and the fibers? Conversely, if 73, and one or all the fibers are ANR's,

what conclusions can be shown about £?

Definition (4.1). A space 73 is weakly locally contractible (w.l.c), if for

every &G73, there is an open set U, containing b which is contractible to b in 73.

Weak local contractibility is a homotopy type invariant, and in fact a

dominance invariant, [l, p. l]. Hence, if (E, p, 73) is a fiber space over a 0-

connected base, then if one fiber is w.l.c, every fiber is w.l.c. We also have the

following lemma whose proof is left to the reader.

Lemma (4.2). Let (E, p, B) be a fiber space. Suppose 73 is ^-connected and

w.l.c. Then, if Fb(¡ is w.l.c. for some b0EB, E is w.l.c.

It might be pointed out that it is possible for E and all the fibers to be

w.l.c. without 73 being w.l.c, and for E and 73 to be w.l.c. without any of the

fibers being w.l.c. (§5 and §4 of [l]).

Theorem (4.3). Let (E, p, 73) be a fiber space in which E is an ANR and

B is 0-connected. Then if Fbo is w.l.c. for some boEB, Fb is an ANR for every

bEB.

Proof. First, let X he any separable metric space which is w.l.c. and which

has the homotopy extension property with respect to metric pairs. Let (Z, A)

be such a pair. For any x0EX, let U be an open set containing xo, which is

contractible in Jtoio; and let/: A—>U he a given map. If / is considered as

a map into X it is homotopically trivial, and can be extended to a map Z—>X.

F~l(U) is an open set of Z containing A and F\ ^'(U) is an extension of/with

values in U. Hence X is a local ANR and consequently an ANR by a theorem

of Hanner [3].

Now, by Corollary (3.2), each fiber Fb has the homotopy extension prop-

erty with respect to metric pairs and since each Fb is w.l.c. the result follows.

The lemma is false without the w.l.c. condition on Fbo as will be seen in the

next section.

We introduce now some notation. Let X and Y be topological spaces and

/: X—»Fa given map. To the triple (X,f, Y) we associate a fiber space defined

in the following way.

Let O/C-X'X Y1 be given by

Í2,= {(*,co)|co(0) = /(*)}.

Qf is given the relative topology. If we set p/(x, co) = « (1) it is easily seen that

the triple (ß/, /»/, Y) is a fiber space. If y0 is a base point in Y, let A{ = pJl(yo),

and let ir(x, ui)=x, (x, w)EAf. The triple (Af, it, X) is also a fiber space and

7T_1(xo) = ß(F, y0), if yo=f(xo). If we had started with a fiber space (E, p, 73),

then as is well known, E and Qp are fiber homotopy equivalent; and in par-

ticular, choosing a base point Z»0 in 73, p~l(bo) = F and Ap are of the same

homotopy type.
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Also, if (£, F, Xo) is an arbitrary pair with base point, let T(£, F, x0) be

the subset of E1 defined by

r(£,P, xo) = {co:7-+£|co(0) = x0, u(l)£P}.

This subset is to be given the relative topology.

Our first objective is to prove that if £ and Pare ANR's Y(E, F, x0) is an

ANR, and similarly, that if A and F are ANR's fi/ is an ANR. We will need

the following simple lemma.

Lemma (4.4). Let Z be an ANR and (A, A) ametricpair. Letf: X—*Z' and

g: A—^Z1 be maps such thatf~g on A, keeping end points fixed, that is, there is

a homotopy H-.AXI-+Z1 such that 770=/|^, Hi = g, 77(x, s)(0) =/(x)(0)

= g(x)(0), i7(x, s)(l) =/(x)(l) =g(x)(l). Then g has an extension g' to all of X

such that g'(x)(0) =/(x)(0), g'(x)(l) =/(x)(l).

Proof. The triple (Z1, 7X7, ZXZ), where 7X7(0) = (w(0), co(l)) is a fiber

space. By hypothesis f~/g on A and the FHET implies the existence of g'.

Lemma (4.5). If (£, F) is an ANR pair, then T(E, F, x0) is an ANR.

Lemma (4.6). If (X, f, Y) is a triple such that X and Y are ANR's then fi/

is an ANR.

We will prove Lemma (4.5), the proof of Lemma (4.6) being essentially the

same except for some obvious modifications.

Proof of Lemma (4.5). By Hanner[4] it is sufficient to prove thatr(£, F, x0)

is a local ANR. Let cj0 be any point in Y(E, F, x0). Since £ is an ANR, it is

U.L.C. [8], therefore there exists a neighborhood U of w0(l) and a map

d>: UX U-^E1 such that:

(1) <j,(x, y)(0) = x,        (x,y)CUXU,

(2) 4>(x, y)(\) = y,       (x, y)CUXU,

(3) d>(x, x)(s) = x,       0 á J ^ 1, x £ U.

If we let M= {w:7—>£|w(0)=xo, «(1)£[/}, then M is an ANR since it is

an open subset of P(£, xo). Hence,

K = MC\Y(E,F,Xo) = {w: J-»E|«(0) = x0, w(l) £ F C\ [/}

is an open subset of T(£, F, x0) and co0£A. We will show that K is an ANR.

Let (Z, A) be a metric pair, and/: A-+K a given map. FC\U is an open

subset of Pand hence an ANR. It follows that considering/as a map A—*M

there is an open set V^.A and two maps

k: V-+M, h\A=f,

g:V^FC\U,       g\A=f(z)(l),zCA.

Define a map 7: V—*K by
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y(z)=h(z)od>[h(z)(l),g(z)],       zEV

where o denotes the usual path multiplication. Then if zEA

7(2)=/(2)o0[/(Z)(l),/(2)(l)]

so that:

(f(z)(2t), OI/ál/2,
y(z)(t) '{

lf(z)(l), 1/2 á t Ú 1

7 is then homotopic to/ keeping end points fixed. By Lemma (4.4) there exists

a map /': V-*E' such that f'\A =/,

/'(Z)(0) = y(z)(0) = xo,       /'(a)(1) = 7(z)(D G F n [/.

/' is a map F—»7£ and it follows that K is an ANR.

Theorem (4.7). Let (E, p, 73) be a fiber space such that E is an ANR, 73 is

^-connected and Fbo is w.l.c. for some baEB. Then for every bEB, Fb and 0(73, b)

are ANR's.

Proof. By Theorem (4.3), Fb is an ANR for every &G73, and by Lemma

(4.5) T(E, Fb, Xo) is an ANR for any x0EFb. Let A be a lifting function and

define a map p: 0(73, b)-*T(E, Fb, x0) by

n(ß) = A(*o, ß),       ßEÜ(B,b).

Now, p induces a map p: T(E, F, x0)—»0(73, ¿>) given by

P(a)(t) = p(a(t)),        a E T(E, F, x0),

and pp= 1. It follows that 0(73, b) is an ANR since it is imbedded in T(E, F, x0)

as a retract.

Theorem (4.7) has a converse, in the following sense:

Theorem (4.8). Let (E, p, 73) be a fiber space such that E is an ANR and

0(73, ¿>o) is w.l.c. for some b0EB. Then if E is O-connected, Fb and 0(73, b) are

ANR's for every bEB.

Proof. Recall the notation introduced after Theorem (4.3) and consider

the fiber space (Ap, ir, E) associated with the map p: E—>73. If x0EFbo, then

7t_1(ä;o) = 0(73, bo). Lemma (4.2) tells us that AP is w.l.c. But since Fbo and

Ap have the same homotopy type, F¡,0 is w.l.c. and Theorem (4.7) applies to

complete the argument.

Theorem (4.9). Let (E, p, 73) be a fiber space such that for some boEB,

0(73, bo) and Fbo are dominated by ANR's. Then Ü(E, x0) is dominated by an

ANR, for any xoEFhr

We will need the following lemmas.
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Lemma (4.10). Letf: X-^Ydenote a map and suppose <p: X±±Z: \p are maps

such that \¡/<p~\ (i.e., Z dominates A). Then, if g=fil>, there is induced a fiber-

wise dominance

fi/ « fia

A ,*\>
i.e., yr,'<b'~¡\.

Proof. Since \¡s<b~\, there is a map k: X—>AJ such that k(x)(0)=^<p(x)

and k(x)(l)=x. Define

<p'(x, w) = (cj>(x),f(k(x)) o w),        (x, a>) £ fi/

and
4>'(z, a) = (ip(z), u),        (z, w) £ fi„.

It is obvious that ty'<b'~jl.

Lemma (4.11). Let f: A—> F denote a map and suppose a: Y+±W:ßare maps

such that ßo:~l (i.e., W dominates Y). Then, if h = af, Af based at y0 is domi-

nated by Ay, based at w0 = a(y0).

Proof. The proof here is similar to (4.10) and is omitted.

Lemma (4.12). Let f: A—>F denote a map. If X and Y are dominated by

ANR's, A/ is dominated by an ANR.

Proof. Consider the diagram

<P
Xt±Z

4>
fi

a
Y*±W

ß

where ypd>r^\, ßa~l and Z and W are ANR's. Applying the previous lemmas

Aas* dominates Aa¡ (based at w0 = o;(yo)), and Aaf dominates A¡ (based at y0).

But, since fia/¿ is an ANR (Lemma (4.6)) fibered over the ANR W, we may

conclude that the fiber here, which is Aaja, is also an ANR by [l, p. 7].

Proof of Theorem (4.9). Let A denote a lifting function for the fiber space

(£, p, B) and define a map/: fi(P, b0)-J>Fbo by

/(o>) = A(*o, w)(l),       w£fi(P, b0).

Consider the fiber space (fi/, p¡, Fbo) associated with this map and correspond-

ing fiber A/ based at x0£p60- By Lemma (4.12) A¡ is dominated by an ANR

and hence we only have to show that A¡ dominates fi(£, x0). As shown in Prop-

osition 1 of [l], there is a homotopy 77: £JX7—>£7 with the properties
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(i) Ho(a) = A(o(0), p(a)),        H ¿a) = a, a G E'

(ii) p(H(a, s)) = p(a),        0 g s á 1,        « G £'.

Define &: 0(E, *o)-^ by

*(»)(*) = #(w> *)(!)»       0 g s á 1, » G ß(£, *o).

Then A(co) is a path which starts at/(/»a») and ends at x0. Note here that the

map h: 0(E, x0)—>0(E, x0) given by

A(co) = A(ar0, p(<¿)) O Ä(«)

is homotopic to the identity. Now, define p.: A¡-^Ü(E, Xo) by

¡t(ß, a) = A(*o, ß) O a,        (ß, a) E A,

and 7: 0(E, x0)—>Af by

7(co) = (/>(co), *(«)),       co G ß(E, *o).

Then,

^7(co) = A(x0, /»(co)) o A(co) = Â(co)

and hence ju7~l and Af dominates 0(E, xo).

Remark. Theorem (4.9) cannot be strengthened by assuming that Fba and

0(73, bo) are ANR's and concluding that 0(E, jc0) is an ANR. That this is

false will be shown by the first example of the next section.

Theorem (4.13). Let (E, p, 73) be a fiber space in which B and all the fibers

are ANR's. Then E is locally contractible. Hence, if in addition E is separable

metric and finite dimensional, E is an ANR.

Proof. Let x0 be a point of £ and Fba the fiber containing Xo. Let Ui be an

open subset of E containing x0. Vi = Uir\Fb„ is open in Fb(¡, and by the local

contractibility of Fbo there is an open set ViCFb„, such that x0E ViC Vi, and

a map \p: F2X7—>Fi such that

i(x, 0) = x,        xE Vi,

$(x, 1) = xo,       xE Vi,

yp(xo,s) = xo,       0 á s á 1.

There is also an open subset Ui of E such that XoE Ui, Ui(~\Fba= Vi. We can

assume that /»( Ui) = M is contractible in 73 to bo keeping bo fixed, so that there

is a map 7 : M—^B1 with the properties

7(e)(0) = b,        bEM,

7(e)(1) = bo,       bE M,

y(bo)(s) = ôo,       0 á s á 1.
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Now, if A is a (regular) lifting function for (£, p, B), A induces a map p.; U\

—>£7 given by

p(x) = A(x, y(p(x))),       x £ Ui.

In particular, p(x0) is the constant path at x0. Let L= {co: 7—>E|«(7) CU2}.

L is an open subset of E1 and p(x0) £7.. Since p is continuous, there is an open

set Uz of £ containing x0 such that p(U3) CE and U3CUi. If x£i/j, then

(1) p(x)(0) = x,

(2) p(x)(i)eu2r\Fb0 = VzCV2,

(3) p(x)(t) eu2cui,    o^i^i.

We can now define a contraction p' : U% X I—* U\ keeping x0 fixed by :

(p(x)(2t),       Oái^l/2

\t(p(x)(l),2t-l),        l/2á<ál.

Thus £ is locally contractible at Xo. The second part of the theorem follows

from the classical result that a separable metric space which is finite dimen-

sional and locally contractible is an ANR.

5. Two examples.
(5.1). A fiber space over the interval [0, l] in which only one fiber is an

ANR.
Let A be a subset of Euclidean «-space E". The cone over A, C(A), is the

subset of £n+1 defined by

C(A) = (t, tx),       0 ^ / g 1, x £ A.

Let C2(A) = C[C(A)], i.e., C^A) is the subset of £"+2 given by

C2(A) = (s, st, stx),       0gíál,0ái|l,íGÍ.

Let 7r: C2(A)—»7 be the projection

ir(s, si, stx) = s.

Theorem (5.2). (C2(A), it, 7) is a fiber space.

Proof. Suppose (£, p, B) is a fiber space and A is a subset of £ which is a

fiber retract of £, that is, there is a map <J?: E—>X such that $(x) =x, x£A;

p$(x) =p(x), x££. Then, (A, p, B) is a fiber space. To see this, let (x, u>)

be a pair such that p(x) =co(0), x£A, co£P/, and set

A'(x, w)(t) = $(A(x, w)(t)),       0 ^ t ^ 1,

where A is a lifting function for (£, p, B). A' is a lifting function for (A, p, B).

Now C(A) X7 = {(s, t, tx) | x£ A, 0 g t ̂  1, 0 ̂  s g 1} is a fiber space over 7

using the projection 7r(s, t, tx)=s. Clearly C2(A) £C(A)X7. Define a fiber

retraction 3>: C(A)X7->C2(A) as follows:
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i(s, s, sx)       if ¿ > s,
Hs, t, tx) « {    '  '

{(s, t, tx)     at ^ s.

$> is well defined and continuous, and if zEC2(X), z= (s', s't', s't'x) = (s, /, tx)

where t = t's', s' = s, so that <I>(z)=z. (C2(X), it, I) is then a fiber space such

that ir-l(s) = C(X), s^O, tt-^O) =a single point.

If, for instance, we let X= {o} + {1/2"}, re = 1, 2, • • • , i.e., a convergent

sequence of reals, C(X) is not an ANR and we have the required example.

C2(X) is not locally contractible, showing that the requirement in Theorem

(4.13) that all the fibers be ANR's, is crucial. 0[C2(Ar), v], where v is the ver-

tex of the double cone, is not an ANR, so that, as remarked after the proof of

Theorem (4.9), it is possible to have a fiber space such that 0(73, bo) and Fbo

are ANR's, but 0(£, x0) is not an ANR, where x0EFbo.

(5.3). A fiber space in which the total space is an ANR but none of the

fibers are ANR's.

Let Xn = Hi" i 57 be a countable cartesian product of re-spheres. Choose a

base point Xo in Xn and let En = P(Xn, xe) be the space of paths in Xn which

start at x0. The triple (£„, 7, J»), where 7(co) =co(l), a»G£„, is a fiber space.

It is clear that 0(X„) =7_1(x0) is not w.l.c. since any neighborhood of x0

contains a countable product of «-spheres. Hence, 0(Xn) is not an ANR,

and neither is y~'(x) for any xEXn. On the other hand, £„ is an ANR, in

fact an AR. To see this we need only observe that Xn has the homotopy ex-

tension property with respect to metric pairs since Sn does, and this property

is a product invariant. This implies that if (Z, A) is a metric pair, and

/: A—*£„ is a given map, it can be extended to all of Z. Therefore, £„ is an AR.

This shows that Theorem (4.3) and Theorem (4.7) are false without the

w.l.c. condition on Fbo.
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