Contents of Volume 104, Number 3
HTML articles powered by AMS MathViewer
View front and back matter from the print issue
- On Riesz and Riemann summability
- Dennis C. Russell
- Trans. Amer. Math. Soc. 104 (1962), 383-391
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140862-X
- The Liouville theorem for a quasi-linear elliptic partial differential equation
- S. Elwood Bohn and Lloyd K. Jackson
- Trans. Amer. Math. Soc. 104 (1962), 392-397
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139840-6
- A conjecture on weak compactness
- Victor Klee
- Trans. Amer. Math. Soc. 104 (1962), 398-402
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139918-7
- Uniqueness of the invariant mean on Abelian topological semigroups
- Indar S. Luthar
- Trans. Amer. Math. Soc. 104 (1962), 403-411
- DOI: https://doi.org/10.1090/S0002-9947-1962-0150232-6
- Continuous matrices and approximate similarity
- James C. Lillo
- Trans. Amer. Math. Soc. 104 (1962), 412-419
- DOI: https://doi.org/10.1090/S0002-9947-1962-0147494-8
- Weak structural synthesis for certain Banach algebras
- Paul Civin
- Trans. Amer. Math. Soc. 104 (1962), 420-424
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140969-7
- A complete set of unitary invariants for $3\times 3$ complex matrices
- Carl Pearcy
- Trans. Amer. Math. Soc. 104 (1962), 425-429
- DOI: https://doi.org/10.1090/S0002-9947-1962-0144911-4
- On convergence of stochastic processes
- John Lamperti
- Trans. Amer. Math. Soc. 104 (1962), 430-435
- DOI: https://doi.org/10.1090/S0002-9947-1962-0143245-1
- $m$-pseudocompactness
- J. F. Kennison
- Trans. Amer. Math. Soc. 104 (1962), 436-442
- DOI: https://doi.org/10.1090/S0002-9947-1962-0145478-7
- The cohomology of a subalgebra of the Steenrod algebra
- Arunas L. Liulevicius
- Trans. Amer. Math. Soc. 104 (1962), 443-449
- DOI: https://doi.org/10.1090/S0002-9947-1962-0149476-9
- Line element fields on manifolds
- W. S. Massey and R. H. Szczarba
- Trans. Amer. Math. Soc. 104 (1962), 450-456
- DOI: https://doi.org/10.1090/S0002-9947-1962-0141137-5
- Local operators on trigonometric series
- Gen-ichirô Sunouchi
- Trans. Amer. Math. Soc. 104 (1962), 457-461
- DOI: https://doi.org/10.1090/S0002-9947-1962-0141936-X
- Homogeneous manifolds of zero curvature
- Joseph A. Wolf
- Trans. Amer. Math. Soc. 104 (1962), 462-469
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140050-7
- On an integral inequality of Z. Opial
- Paul R. Beesack
- Trans. Amer. Math. Soc. 104 (1962), 470-475
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139706-1
- On the differentiability of the solutions of quasilinear partial differential equations
- J. Peetre
- Trans. Amer. Math. Soc. 104 (1962), 476-482
- DOI: https://doi.org/10.1090/S0002-9947-1962-0146518-1
- A class of non-Desarguesian affine planes
- T. G. Ostrom
- Trans. Amer. Math. Soc. 104 (1962), 483-487
- DOI: https://doi.org/10.1090/S0002-9947-1962-0141001-1
- On the least positive eigenvalue of integral equations with equimeasurable kernels
- Binyamin Schwarz
- Trans. Amer. Math. Soc. 104 (1962), 488-494
- DOI: https://doi.org/10.1090/S0002-9947-1962-0147863-6
- On the proximate linear orders of entire Dirichlet series
- A. G. Azpeitia
- Trans. Amer. Math. Soc. 104 (1962), 495-501
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139725-5
- An almost everywhere existence theorem for solutions of Volterra functional equations
- J. Yeh
- Trans. Amer. Math. Soc. 104 (1962), 502-509
- DOI: https://doi.org/10.1090/S0002-9947-1962-0150553-7
- The Pythagorean theorem in certain symmetry classes of tensors
- Marvin Marcus and Henryk Minc
- Trans. Amer. Math. Soc. 104 (1962), 510-515
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139626-2
- Invariant factors and two criteria for projectivity of modules
- Maurice Auslander and David A. Buchsbaum
- Trans. Amer. Math. Soc. 104 (1962), 516-522
- DOI: https://doi.org/10.1090/S0002-9947-1962-0157987-5
- On $\pi (x+y)\leq \pi (x)+\pi (y)$
- Sanford L. Segal
- Trans. Amer. Math. Soc. 104 (1962), 523-527
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139586-4
- A note on some new finite division ring planes
- R. Sandler
- Trans. Amer. Math. Soc. 104 (1962), 528-531
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139640-7
- Functions whose derivative has a positive real part
- T. H. MacGregor
- Trans. Amer. Math. Soc. 104 (1962), 532-537
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140674-7