The Liouville theorem for a quasi-linear elliptic partial differential equation
HTML articles powered by AMS MathViewer
- by S. Elwood Bohn and Lloyd K. Jackson
- Trans. Amer. Math. Soc. 104 (1962), 392-397
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139840-6
- PDF | Request permission
References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- Serge Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927), no. 1, 551–558 (German). MR 1544873, DOI 10.1007/BF01475472
- James Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1955/56), 292–308. MR 81415, DOI 10.1007/BF02787725
- L. Bers and L. Nirenberg, On linear and non-linear elliptic boundary value problems in the plane, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 141–167. MR 0076982 E. Hopf, Elementarie Betrachtungen über die Losungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Preuss. Akad. Wiss. 19 (1927), 147-152.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 104 (1962), 392-397
- MSC: Primary 35.47
- DOI: https://doi.org/10.1090/S0002-9947-1962-0139840-6
- MathSciNet review: 0139840