Functions whose derivative has a positive real part
HTML articles powered by AMS MathViewer
- by T. H. MacGregor
- Trans. Amer. Math. Soc. 104 (1962), 532-537
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140674-7
- PDF | Request permission
References
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. MR 1503516, DOI 10.2307/2007212
- F. Herzog and G. Piranian, On the univalence of functions whose derivative has a positive real part, Proc. Amer. Math. Soc. 2 (1951), 625–633. MR 43211, DOI 10.1090/S0002-9939-1951-0043211-9
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185 (1953). MR 54711 J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519.
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823 K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. (1) 2 (1934-1935), 129-155. G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1954.
- G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188–211 (German). MR 1512482, DOI 10.1007/BF01448843
- S. R. Tims, A theorem on functions schlicht in convex domains, Proc. London Math. Soc. (3) 1 (1951), 200–205. MR 43899, DOI 10.1112/plms/s3-1.1.200
- Stefan E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310–340. MR 1501813, DOI 10.1090/S0002-9947-1935-1501813-X J. Wolff, L’integrale d’une function holomorphe et à partie réelle positive dans un demiplan est univalente, C. R. Acad. Sci. Paris 198 (1934), 1209-1210.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 104 (1962), 532-537
- MSC: Primary 30.43
- DOI: https://doi.org/10.1090/S0002-9947-1962-0140674-7
- MathSciNet review: 0140674